Patents by Inventor Jan Lossen

Jan Lossen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369530
    Abstract: Provided are a method for local structuring of a silicon layer, which method comprises a step of local modification of the etching resistance within said silicon layer and a subsequent step of removing unmodified regions of said silicon layer by etching and applications of this method for the production of solar cells.
    Type: Application
    Filed: October 7, 2021
    Publication date: November 16, 2023
    Inventors: Florian BUCHHOLZ, Jan HOSS, Haifeng CHU, Jan LOSSEN, Valentin Dan MIHAILETCHI
  • Publication number: 20140209166
    Abstract: A method for producing monocrystalline n-silicon solar cells having a rear-side passivated p+ emitter and rear-side, spatially separate heavily doped n++-base regions near the surface, as well as an interdigitated rear-side contact finger structure, which is in conductive connection with the p+-emitter regions and the n++-base regions. An aluminum thin layer or an aluminum-containing thin layer is first deposited on the rear side of the n-silicon wafer, and the thin layer is subsequently structured so that openings are obtained in the region of the future base contacts. In a further process step, the aluminum is then diffused into the n-silicon wafer in order to form a structured emitter layer.
    Type: Application
    Filed: April 3, 2014
    Publication date: July 31, 2014
    Applicant: SOLAR WORLD INDUSTRIES THUERINGEN GMBH
    Inventors: Hans-Joachim KROKOSZINSKI, Jan LOSSEN
  • Patent number: 8728922
    Abstract: A method for producing monocrystalline n-silicon solar cells having a rear-side passivated p+ emitter and rear-side, spatially separate heavily doped n++-base regions near the surface, as well as an interdigitated rear-side contact finger structure, which is in conductive connection with the p+-emitter regions and the n++-base regions. An aluminum thin layer or an aluminum-containing thin layer is first deposited on the rear side of the n-silicon wafer, and the thin layer is subsequently structured so that openings are obtained in the region of the future base contacts. In a further process step, the aluminum is then diffused into the n-silicon wafer in order to form a structured emitter layer.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: May 20, 2014
    Assignee: SolarWorld Industries-Thueringen GmbH
    Inventors: Hans-Joachim Krokoszinski, Jan Lossen
  • Publication number: 20120167968
    Abstract: A method is described for manufacturing solar cells having a selective emitter. Wafers free of saw damage are initially provided. A doping source is then applied over the entire surface of the wafer and the dopant is initially lightly diffused into the wafer until a first layer resistance area is obtained. The applied doping source is subsequently structured, only those areas which essentially correspond to the sections on the wafer to be subsequently contacted remaining as a result of the structuring.
    Type: Application
    Filed: March 26, 2010
    Publication date: July 5, 2012
    Inventors: Jan Lossen, Mathias Weiss, Karsten Meyer, Tobias Wuetherich
  • Publication number: 20110041902
    Abstract: A method for producing monocrystalline n-silicon solar cells having a rear-side passivated p+ emitter and rear-side, spatially separate heavily doped n++-base regions near the surface, as well as an interdigitated rear-side contact finger structure, which is in conductive connection with the p+-emitter regions and the n++-base regions. An aluminum thin layer or an aluminum-containing thin layer is first deposited on the rear side of the n-silicon wafer, and the thin layer is subsequently structured so that openings are obtained in the region of the future base contacts. In a further process step, the aluminum is then diffused into the n-silicon wafer in order to form a structured emitter layer.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 24, 2011
    Inventors: Hans-Joachim Krokoszinski, Jan Lossen