Patents by Inventor Jan Luyten

Jan Luyten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9464342
    Abstract: A method for manufacturing a high ductility Ti-, Ti-alloy or NiTi-foam, meaning a compression strain higher than 10%, includes: preparing a powder suspension of a Ti-, NiTi- or Ti-alloy powder, bringing the said powder suspension into a desired form by gelcasting to form a green artifact. The method also includes a calcination step wherein the green artifact is calcined, and sintering the artifact. The calcination step includes a slow heating step wherein said green artifact is heated at a rate lower or equal to 20° C./hour to a temperature between 400° C. and 600° C. and the Ti-, NiTi- or Ti-alloy powder has a particle size less than 100 ?m. A high ductility Ti-, Ti-alloy or NiTi foam, with a compression higher than 10%, with a theoretical density less than 30%, pore size (cell size) between 50 to 1000 ?m can be obtained with such a method.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 11, 2016
    Assignee: VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK (VITO)
    Inventors: Steven Mullens, Ivo Thijs, Jozef Cooymans, Jan Luyten
  • Publication number: 20150240331
    Abstract: A method for manufacturing a high ductility Ti-, Ti-alloy or NiTi-foam, meaning a compression strain higher than 10%, includes: preparing a powder suspension of a Ti-, NiTi- or Ti-alloy powder, bringing the said powder suspension into a desired form by gelcasting to form a green artefact. The method also includes a calcination step wherein the green artefact is calcined, and sintering the artifact. The calcination step includes a slow heating step wherein said green artefact is heated at a rate lower or equal to 20° C./hour to a temperature between 400° C. and 600° C. and the Ti-, NiTi- or Ti-alloy powder has a particle size less than 100 ?m. A high ductility Ti-, Ti-alloy or NiTi foam, with a compression higher than 10%, with a theoretical density less than 30%, pore size (cell size) between 50 to 1000 ?m can be obtained with such a method.
    Type: Application
    Filed: March 24, 2015
    Publication date: August 27, 2015
    Inventors: Steven MULLENS, Ivo THIJS, Jozef COOYMANS, Jan LUYTEN
  • Patent number: 8992828
    Abstract: A method for manufacturing a high ductility Ti-, Ti-alloy or NiTi-foam, meaning a compression strain higher than 10%, includes: preparing a powder suspension of a Ti-, NiTi- or Ti-alloy powder, bringing the said powder suspension into a desired form by gelcasting to form a green artifact. The method also includes a calcination step wherein the green artifact is calcined, and sintering the artifact. The calcination step includes a slow heating step wherein said green artifact is heated at a rate lower or equal to 20° C./hour to a temperature between 400° C. and 600° C. and the Ti-, NiTi- or Ti-alloy powder has a particle size less than 100 ?m. A high ductility Ti-, Ti-alloy or NiTi foam, with a compression higher than 10%, with a theoretical density less than 30%, pore size (cell size) between 50 to 1000 ?m can be obtained with such a method.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: March 31, 2015
    Assignee: Vlaamse Instelling Voor Technologisch Onderzoek (VITO)
    Inventors: Steven Mullens, Ivo Thijs, Jozef Cooymans, Jan Luyten
  • Publication number: 20100256773
    Abstract: A surgical implant (10) includes a porous core part (11) made of a porous biocompatible material and a dense shell (12) made of a biocompatible material provided on a part of the surface of the porous core part which forms an interface with biological soft tissue. The dense shell shields the porous core from in-growth of soft tissue. The porous core part has open interconnected pores. A method of manufacturing a surgical implant includes the steps of: producing a porous core part, applying a viscous suspension on a part of the surface of the porous core part and applying a thermal treatment.
    Type: Application
    Filed: July 3, 2008
    Publication date: October 7, 2010
    Applicant: Vlaamse Instelling Voor Technologisch Onderzoek N.V. (VITO)
    Inventors: Ivo Thijs, Wim Bouwen, Steven Mullens, Jan Luyten, Norbert Dejonghe
  • Publication number: 20090280022
    Abstract: A method for manufacturing a high ductility Ti-, Ti-alloy or NiTi-foam, meaning a compression strain higher than 10%, includes: preparing a powder suspension of a Ti-, NiTi- or Ti-alloy powder, bringing the said powder suspension into a desired form by gelcasting to form a green artefact. The method also includes a calcination step wherein the green artefact is calcined, and sintering the artifact. The calcination step includes a slow heating step wherein said green artefact is heated at a rate lower or equal to 20° C./hour to a temperature between 400° C. and 600° C. and the Ti-, NiTi- or Ti-alloy powder has a particle size less than 100 ?m. A high ductility Ti-, Ti-alloy or NiTi foam, with a compression higher than 10%, with a theoretical density less than 30%, pore size (cell size) between 50 to 1000 ?m can be obtained with such a method.
    Type: Application
    Filed: June 7, 2006
    Publication date: November 12, 2009
    Inventors: Steven Mullens, Ivo Thijs, Jozef Cooymans, Jan Luyten
  • Publication number: 20030148089
    Abstract: The present invention relates to a ceramic foam structure characterized in that it is produced by using a reaction bonded power. The invention also relates to a method for producing a ceramic foam structure, characterized in that the method comprises the following steps: providing a reaction bonded power blend, producing a stable slurry of the powder blend in water or in a solvent, producing a foam, drying said foam, calcinating said foam, oxidizing said foam, and a final thermal treatment Using this method, ceramic foams having better mechanical properties compared to classical foams can be prepared.
    Type: Application
    Filed: November 21, 2002
    Publication date: August 7, 2003
    Inventors: Jozef Cooymans, Carina Smolders, Jan Luyten
  • Patent number: 6514394
    Abstract: An electrochemical sensor to measure the activity of a metallic component in a molten metal, comprising the molten metal as the measuring electrode, a reference electrode containing the metallic component to be measured, separated from each other by a liquid ion-conducting halide comprising the metallic component to be measured and immobilized in a non-conducting porous support fabricated from a material inert or almost inert to the molten metal, the halide and the reference electrode material, and whereby the reference electrode further comprises an external connection comprising an electric wire held in an electric isolating material which is chemically inert or almost inert to the molten metal and the reference electrode material, characterized in that the sealing of the reference electrode which is adapted to be sealed is done by a high temperature cement and by the molten metal itself and by a gas tight sealing of the external connection above the melt, and the reference electrode is introduced by a melt
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: February 4, 2003
    Assignee: Vlaamse Instelling Voor Technologisch Onderzoek (V.I.T.O.)
    Inventors: Johan Vangrunderbeek, Pieter Lens, Jan Luyten