Patents by Inventor Jan Marfeld

Jan Marfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240363367
    Abstract: In an embodiment a method includes providing a connecting element having a first main surface, applying a first frame-shaped metallization to or over a carrier and applying a first frame-shaped solder reservoir over the first main surface of the connecting element or applying the first frame-shaped metallization over the first main surface of the connecting element and applying the first frame-shaped solder reservoir over or to the carrier, wherein a width of the first frame-shaped solder reservoir is smaller than a width of the first frame-shaped metallization and liquefying a solder of the first frame-shaped solder reservoir so that a first frame-shaped solder layer is formed which mechanically connects the carrier and the connecting element to one another, the first frame-shaped solder layer having a seam which is formed during liquefying the solder of the first frame-shaped solder reservoir and surrounds the first frame-shaped solder layer.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 31, 2024
    Inventors: Johann Ramchen, Jörg Erich Sorg, Klaus Müller, Jan Marfeld, Steffen Strauss, Johann Walter
  • Patent number: 12002901
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, at least one side area connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and a molded body, wherein the molded body surrounds the optoelectronic semiconductor chip at all side areas at least in places, the molded body is electrically insulating, and the molded body is free of any conductive element that completely penetrates the molded body.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: June 4, 2024
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 11973317
    Abstract: In an embodiment, the semiconductor laser (1) comprises a semiconductor layer sequence (2) in which an active zone (22) for generating laser radiation (L) is located. Several electrical contact surfaces (5) serve for external electrical contacting of the semiconductor layer sequence (2). Several parallel ridge waveguides (3) are formed from the semiconductor layer sequence (2) and configured to guide the laser radiation (L) along a resonator axis, so that there is a separating trench (6) between adjacent ridge waveguides. At least one electrical feed (4) serves from at least one of the electrical contact surfaces (5) to guide the current to at least one of the ridge waveguides (3). A distance (A4) between the ridge waveguides is at most 50 ?m. The ridge waveguides (3) are electrically controllable individually or in groups independently of one another and/or configured for single-mode operation.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: April 30, 2024
    Assignee: OSRAM OLED GMBH
    Inventors: Jan Marfeld, André Somers, Andreas Löffler, Sven Gerhard
  • Publication number: 20230352617
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, at least one side area connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and a molded body, wherein the molded body surrounds the optoelectronic semiconductor chip at all side areas at least in places, the molded body is electrically insulating, and the molded body is free of any conductive element that completely penetrates the molded body.
    Type: Application
    Filed: June 22, 2023
    Publication date: November 2, 2023
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 11749776
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier; arranging at least one optoelectronic semiconductor chip at a top side of the carrier, wherein the semiconductor chip includes semiconductor layers deposited on a substrate; forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip and at least some of the layers deposited on the substrate are free of the shaped body such that these layers are not covered or completely exposed; and removing the carrier.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: September 5, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20230116903
    Abstract: A light pixel projection module includes a pixel light source, a light pixel projection assembly for projecting a light pixel generated by the light pixel generating assembly, and an optical time-of-flight (ToF) measurement assembly for measuring a distance between the projection module and an external object. The ToF measurement assembly includes a ToF light source, a beam splitting optical device for splitting an incident light beam into a reflected main beam component and a transmitted and attenuated secondary beam component, and an APD-based ToF photodetector for light detection. The beam splitting optical device is arranged in the optical path of light beams emitted by the ToF light source such that it splits each light beam emitted by the ToF light source into a main beam component leaving the module and heading towards the external object and a secondary beam component remaining within the module and hitting the ToF photodetector.
    Type: Application
    Filed: February 5, 2021
    Publication date: April 13, 2023
    Inventors: Massimo Cataldo MAZZILLO, Johann RAMCHEN, Jan MARFELD
  • Publication number: 20220255292
    Abstract: A semiconductor laser device is specified comprising an edge emitting semiconductor laser diode, which emits laser light along a horizontal direction during operation, a reflector element, which deflects a first part of the laser light in a vertical direction, while a second part of the laser light continues to propagate in the horizontal direction, and a detector element, which is arranged at least partly in a beam path of the second part of the laser light. An optoelectronic beam deflection element for a semiconductor laser device is furthermore specified.
    Type: Application
    Filed: May 26, 2020
    Publication date: August 11, 2022
    Inventors: Johann Ramchen, Andreas Fröhlich, Martin Haushalter, Jan Marfeld, Massimo Cataldo Mazzillo
  • Publication number: 20220109082
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier; arranging at least one optoelectronic semiconductor chip at a top side of the carrier, wherein the semiconductor chip includes semiconductor layers deposited on a substrate; forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip and at least some of the layers deposited on the substrate are free of the shaped body such that these layers are not covered or completely exposed; and removing the carrier.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 11239386
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, side areas connecting the top area and the bottom area, and epitaxially produced layers; electrical n- and p-side contacts at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the epitaxially produced layers are free from the shaped body.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 1, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20210399529
    Abstract: A semiconductor laser includes an edge-emitting laser diode, which has an active zone for generating laser radiation and a facet having a radiation exit region, and at least one photodiode. The facet is arranged on a main emission side of the laser diode. The photodiode is arranged in such a way that at least part of the laser radiation exiting at the facet reaches the photodiode.
    Type: Application
    Filed: November 5, 2019
    Publication date: December 23, 2021
    Inventors: Jörg Erich SORG, Jan MARFELD, Stefan MORGOTT
  • Publication number: 20210057884
    Abstract: In an embodiment, the semiconductor laser (1) comprises a semiconductor layer sequence (2) in which an active zone (22) for generating laser radiation (L) is located. Several electrical contact surfaces (5) serve for external electrical contacting of the semiconductor layer sequence (2). Several parallel ridge waveguides (3) are formed from the semiconductor layer sequence (2) and configured to guide the laser radiation (L) along a resonator axis, so that there is a separating trench (6) between adjacent ridge waveguides. At least one electrical feed (4) serves from at least one of the electrical contact surfaces (5) to guide the current to at least one of the ridge waveguides (3). A distance (A4) between the ridge waveguides is at most 50 ?m. The ridge waveguides (3) are electrically controllable individually or in groups independently of one another and/or configured for single-mode operation.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 25, 2021
    Inventors: Jan Marfeld, André Somers, Andreas Löffler, Sven Gerhard
  • Publication number: 20200251612
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, side areas connecting the top area and the bottom area, and epitaxially produced layers; electrical n- and p-side contacts at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the epitaxially produced layers are free from the shaped body.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 6, 2020
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 10665747
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier, arranging at least one optoelectronic semiconductor chip at a top side of the carrier, applying a phosphor layer at the at least one semiconductor chip, forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip, and removing the carrier, wherein the phosphor layer is applied before forming the shaped body.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 26, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 10431954
    Abstract: A laser component includes a housing, a laser chip arranged in the housing, and a conversion element for radiation conversion arranged in the housing wherein the conversion element is irradiatable with laser radiation of the laser chip. A method of producing such a laser component includes providing component parts of the laser component including a laser chip, a conversion element for radiation conversion and housing parts, and assembling the component parts of the laser component such that a housing is provided within which the laser chip and the conversion element are arranged, wherein the conversion element is irradiatable with laser radiation of the laser chip.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: October 1, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jan Seidenfaden, Jan Marfeld, Hubert Schmid, Soenke Tautz, Roland Enzmann
  • Publication number: 20180248074
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier, arranging at least one optoelectronic semiconductor chip at a top side of the carrier, applying a phosphor layer at the at least one semiconductor chip, forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip, and removing the carrier, wherein the phosphor layer is applied before forming the shaped body.
    Type: Application
    Filed: April 26, 2018
    Publication date: August 30, 2018
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 10047915
    Abstract: An optical element is provided for beam shaping for radiation emitted by a radiation-emitting semiconductor chip. The optical element includes a radiation entrance face and a boundary surface different from the radiation entrance face with a first region and a second region. The first and second regions are arranged and embodied such that a first radiation portion of radiation entering the optical element through the radiation entrance face is reflected in the first region and after reflection in the first region is deflected in the second region towards a plane defined by the radiation entrance face.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 14, 2018
    Assignee: OSRAM GmbH
    Inventors: Ales Markytan, Christian Gärtner, Horst Varga, Jan Marfeld, Janick Ihringer, Manfred Scheubeck, Roland Schulz, Alexander Linkov
  • Patent number: 9985171
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, and side areas connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the optoelectronic semiconductor chip is a flip-chip having the electrical contract locations only at one side, either the underside or the top side, the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the shaped body is free of a via that electrically connects the optoelectronic semiconductor chip.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 29, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20180097154
    Abstract: In various embodiments, a light emitting component is provided. The light emitting component includes a plurality of light emitting semiconductor chips. The semiconductor chips are arranged on at least one carrier. The semiconductor chips are electrically contacted. The light emitting component further includes a converter. The converter is configured to convert light in a first wavelength range, said light being emitted by at least one portion of the light emitting semiconductor chips, at least partly into light in a second wavelength range. The converter is formed separately from the at least one carrier.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 5, 2018
    Inventors: Jan Marfeld, Christian Betthausen, Thomas Schlereth, Ivar Tangring
  • Publication number: 20180026421
    Abstract: A laser component includes a housing, a laser chip arranged in the housing, and a conversion element for radiation conversion arranged in the housing wherein the conversion element is irradiatable with laser radiation of the laser chip. A method of producing such a laser component includes providing component parts of the laser component including a laser chip, a conversion element for radiation conversion and housing parts, and assembling the component parts of the laser component such that a housing is provided within which the laser chip and the conversion element are arranged, wherein the conversion element is irradiatable with laser radiation of the laser chip.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Inventors: Jan Seidenfaden, Jan Marfeld, Hubert Schmid, Soenke Tautz, Roland Enzmann
  • Publication number: 20170294552
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, and side areas connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the optoelectronic semiconductor chip is a flip-chip having the electrical contract locations only at one side, either the underside or the top side, the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the shaped body is free of a via that electrically connects the optoelectronic semiconductor chip.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld