Patents by Inventor Jan Matysik

Jan Matysik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10962425
    Abstract: An arrangement for measuring a force and/or a torque using the inverse-magnetostrictive effect as well a method for a measurement of a force and/or a torque using the inverse-magnetostrictive effect are provided. The force or the torque acts on a machine element (01) that has at least one magnetization area (04) for a magnetization and thus forms a primary sensor for the measurement using the inverse-magnetostrictive effect. The arrangement includes at least two spaced apart magnetic field sensors (06) for measuring a magnetic field (11) caused by the magnetization and also by the force or by the torque, with each of these sensors forming a secondary sensor for the measurement using the inverse-magnetostrictive effect. The arrangement further includes a measurement signal processing unit that is constructed for the signal processing of the measurement signals of the individual magnetic field sensors (06).
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: March 30, 2021
    Assignee: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Stephan Neuschaefer-Rube, Jan Matysik, Christian Mock
  • Patent number: 10281344
    Abstract: An arrangement for measuring a force and/or a torque (Mt) on a machine element extending along an axial axis is disclosed. The machine element has a cavity and at least one magnetization region, extending circumferentially around the axial axis in an axial section. The arrangement further includes at least one first magnetic field sensor, a second magnetic field sensor, a third magnetic field sensor and a fourth magnetic field sensor, each of which is designed to individually measure an axial direction component of a magnetic field caused by the magnetization and also by the force or torque (Mt) and each of which lies in the axial section. At least the first magnetic sensor and the second magnetic sensor are arranged in the cavity of the machine element.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: May 7, 2019
    Assignee: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Stephan Neuschaefer-Rube, Jan Matysik
  • Patent number: 10254182
    Abstract: The present invention relates to an arrangement for measuring a force and/or moment on a hollow-cylindrical machine element, using the inverse magnetostrictive effect. The machine element extends in an axis and has a sensor region of hollow cylinder-type basic shape. This sensor region has a permanent magnetization or the arrangement comprises magnetizing elements for magnetizing the sensor region. The arrangement further comprises at least one magnetic field sensor which is designed to measure at least one component of a magnetic field brought about by the magnetization of the sensor region and by the magnetic field caused by the force to be measured and/or by the moment to be measured. According to the invention, the machine element, in the hollow space defined by the hollow cylinder-type basic shape, has a wall-type longitudinal structure.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 9, 2019
    Assignee: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventor: Jan Matysik
  • Patent number: 10151651
    Abstract: A hollow machine element for transmitting a force and/or a torque is provided. The hollow machine element forms a component of an assembly for measuring the acting force and/or torque by using inverse magnetostrictive effect. The hollow machine element extends along an axis and has a cavity that extends along the axis. The machine element includes at least one magnetization region for magnetization, and which includes a magnetostrictive material. A magnetic field measurable via the assembly can be caused by the magnetization and by the force and/or by the torque. The magnetization region is directed toward the cavity and has an axially central segment, in which the magnetization region is arranged at a radial distance from a ferromagnetic region of the machine element to define a gap therebetween. The gap may be empty or filled with insulation, to provide magnetic insulation.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 11, 2018
    Assignee: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Stephan Neuschaefer-Rube, Jan Matysik, Darius Dlugai, Christian Schmitt, Markus Neubauer, Tomas Smetana
  • Publication number: 20180156676
    Abstract: An arrangement for measuring a force and/or a torque using the inverse-magnetostrictive effect as well a method for a measurement of a force and/or a torque using the inverse-magnetostrictive effect are provided. The force or the torque acts on a machine element (01) that has at least one magnetization area (04) for a magnetization and thus forms a primary sensor for the measurement using the inverse-magnetostrictive effect. The arrangement includes at least two spaced apart magnetic field sensors (06) for measuring a magnetic field (11) caused by the magnetization and also by the force or by the torque, with each of these sensors forming a secondary sensor for the measurement using the inverse-magnetostrictive effect. The arrangement further includes a measurement signal processing unit that is constructed for the signal processing of the measurement signals of the individual magnetic field sensors (06).
    Type: Application
    Filed: May 18, 2016
    Publication date: June 7, 2018
    Applicant: Schaeffler Technologies AG & Co. KG
    Inventors: Stephan Neuschaefer-Rube, Jan Matysik, Christian Mock
  • Patent number: 9989429
    Abstract: The present invention relates to an arrangement for measuring a force and/or a torque on a machine element extending in an axis, using the inverse magnetostrictive effect. The machine element has at least one permanent magnetization. The permanent magnetization extends along a closed magnetization path. The magnetization path runs preferably at least partially along the surface of the machine element. The arrangement further includes at least one magnetic field sensor which is arranged opposite the machine element. The magnetic field sensor serves to determine a magnetic field and is designed to measure at least one vector component of a magnetic field coming from the machine element, which field is produced on the one hand by the permanent magnetization and on the other hand by the force and/or by the torque. According to the invention, the orientation of the permanent magnetization relative to the axis changes along the magnetization path.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 5, 2018
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Jan Matysik, Christian Mock, Stephan Neuschaefer-Rube
  • Publication number: 20180149529
    Abstract: An arrangement for measuring a force and/or a torque using the inverse-magnetostrictive effect includes a workpiece made from steel as a primary sensor for a measurement of a force and/or a torque using the inverse-magnetostrictive effect. The arrangement includes a machine element on which the force or the torque acts, which causes mechanical stress and the machine element is usually slightly deformed. The machine element is formed of steel and has at least one magnetostrictive area for a magnetization, which forms a primary sensor for measuring the force and/or the torque. The arrangement further includes at least one magnetic field sensor for measuring a magnetic field caused by the magnetization and also by the force and/or by the torque. The magnetic field sensor forms a secondary sensor for measuring the force and/or the torque.
    Type: Application
    Filed: May 4, 2016
    Publication date: May 31, 2018
    Applicant: Schaeffler Technologies AG & Co. KG
    Inventors: Stephan Neuschaefer-Rube, Jan Matysik, Markus Neubauer, Christian Schmitt, Thomas Dirnberger
  • Publication number: 20180120176
    Abstract: A hollow machine element for transmitting a force and/or a torque is provided. The hollow machine element forms a component of an assembly for measuring the acting force and/or torque by using inverse magnetostrictive effect. The hollow machine element extends along an axis and has a cavity that extends along the axis. The machine element includes at least one magnetization region for magnetization, and which includes a magnetostrictive material. A magnetic field measurable via the assembly can be caused by the magnetization and by the force and/or by the torque. The magnetization region is directed toward the cavity and has an axially central segment, in which the magnetization region is arranged at a radial distance from a ferromagnetic region of the machine element to define a gap therebetween. The gap may be empty or filled with insulation, to provide magnetic insulation.
    Type: Application
    Filed: March 29, 2016
    Publication date: May 3, 2018
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Stephan NEUSCHAEFER-RUBE, Jan MATYSIK, Darius DLUGAI, Christian SCHMITT, Markus NEUBAUER, Tomas SMETANA
  • Publication number: 20170370784
    Abstract: The present invention relates to an arrangement for measuring a force and/or a torque (Mt) on a machine element extending along an axis, using the inverse magnetostrictive effect. The machine element has a cavity extending along the axis and at least one magnetization region for magnetization purposes, extending circumferentially around the axis in an axial section of the machine element. The arrangement further includes at least one first magnetic field sensor, a second magnetic field sensor, a third magnetic field sensor and a fourth magnetic field sensor, each of which is designed to individually measure an axial direction component of a magnetic field caused by the magnetization and also by the force and/or torque (Mt) and each of which lies in one of the axial sections of the magnetization regions. According to the invention, at least the first magnetic sensor and the second magnetic sensor are arranged in the cavity of the machine element.
    Type: Application
    Filed: January 27, 2016
    Publication date: December 28, 2017
    Applicant: Schaeffler Technologies AG & Co. KG
    Inventors: Stephan Neuschaefer-Rube, Jan Matysik
  • Patent number: 9587996
    Abstract: A machine element designed for transferring a force and/or a torque and also for measuring the force or the torque to be transferred, as well as to an arrangement for measuring a force and/or a torque having such a machine element. A method for producing the machine element is also provided. The machine element according to the invention has a primary sensor for measuring the force to be transferred or the torque to be transferred and this sensor has a permanent magnetization. A measurable magnetic field occurring outside of the machine element is caused by the permanent magnetization and also by the force and/or by the torque. The permanent magnetization extends along a closed magnetization path. The permanent magnetization is formed in a surface layer of the machine element that has a greater magnetic permeability than at least the sections of the machine element located under the surface layer.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: March 7, 2017
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Jan Matysik
  • Publication number: 20170010165
    Abstract: The present invention relates to an arrangement for measuring a force and/or moment on a hollow-cylindrical machine element, using the inverse magnetostrictive effect. The machine element extends in an axis and has a sensor region of hollow cylinder-type basic shape. This sensor region has a permanent magnetization or the arrangement comprises magnetizing elements for magnetizing the sensor region. The arrangement further comprises at least one magnetic field sensor which is designed to measure at least one component of a magnetic field brought about by the magnetization of the sensor region and by the magnetic field caused by the force to be measured and/or by the moment to be measured. According to the invention, the machine element, in the hollow space defined by the hollow cylinder-type basic shape, has a wall-type longitudinal structure.
    Type: Application
    Filed: December 5, 2014
    Publication date: January 12, 2017
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventor: Jan MATYSIK
  • Publication number: 20160327443
    Abstract: The present invention relates to an arrangement for measuring a force and/or a torque on a machine element extending in an axis, using the inverse magnetostrictive effect. The machine element has at least one permanent magnetization. The permanent magnetization extends along a closed magnetization path. The magnetization path runs preferably at least partially along the surface of the machine element. The arrangement further includes at least one magnetic field sensor which is arranged opposite the machine element. The magnetic field sensor serves to determine a magnetic field and is designed to measure at least one vector component of a magnetic field coming from the machine element, which field is produced on the one hand by the permanent magnetization and on the other hand by the force and/or by the torque. According to the invention, the orientation of the permanent magnetization relative to the axis changes along the magnetization path.
    Type: Application
    Filed: December 18, 2014
    Publication date: November 10, 2016
    Applicant: Schaeffler Technologies AG & Co. KG
    Inventors: Jan Matysik, Christian Mock, Stephan Neuschaefer-Rube
  • Publication number: 20160025579
    Abstract: A machine element designed for transferring a force and/or a torque and also for measuring the force or the torque to be transferred, as well as to an arrangement for measuring a force and/or a torque having such a machine element. A method for producing the machine element is also provided. The machine element according to the invention has a primary sensor for measuring the force to be transferred or the torque to be transferred and this sensor has a permanent magnetization. A measurable magnetic field occurring outside of the machine element is caused by the permanent magnetization and also by the force and/or by the torque. The permanent magnetization extends along a closed magnetization path. The permanent magnetization is formed in a surface layer of the machine element that has a greater magnetic permeability than at least the sections of the machine element located under the surface layer.
    Type: Application
    Filed: July 21, 2015
    Publication date: January 28, 2016
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventor: Jan Matysik