Patents by Inventor Jan O. Mangual-Soto

Jan O. Mangual-Soto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220241597
    Abstract: A system is provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device (IMD). The system also includes one or more processors configured to determine an atrial-ventricular (AV) conduction interval (ARRV) between the A site and a first RV sensed event at the RV site, determine an inter-ventricular (VV) conduction interval (RLV-RRV) between a paced event at the LV site and a second RV sensed event at the RV site, and set a ventricular refractory period (VRP) based on at least one of the AV conduction interval or the VV conduction interval and a predetermined offset. The one or more processors are also configured to blank signals over the RV sensing channel during the VRP.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventor: Jan O. Mangual-Soto
  • Patent number: 11400295
    Abstract: Systems and methods for His bundle pacing and classifying response to pacing impulses include applying, using a pulse generator, an impulse through a stimulating electrode to induce a response from a patient heart. A response to the impulse is measured using at least one sensing electrode and time-domain based characteristics of the response are analyzed to determine whether His bundle capture has occurred and, if so, what type of capture has occurred.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: August 2, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Yun Qiao, Wenwen Li, Jan O. Mangual-Soto, Luke C. McSpadden
  • Patent number: 11369305
    Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 28, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
  • Publication number: 20220167899
    Abstract: A method of generating a map of a portion of a patient's anatomy using an electroanatomical mapping system includes separating an anatomical region (e.g., the heart) into an inclusion region (e.g., the left atrium) and an exclusion region (e.g., the left ventricle) by defining a boundary surface (e.g., along the mitral valve). A label electrode carried by a multi-electrode catheter can be defined and used to determine whether or not to add an electrophysiology data point collected using the multi-electrode catheter to the map. In particular, electrophysiology data points can be added to the map of the portion of the patient's anatomy when they are collected with the label electrode within the inclusion region. Positions of the label electrode can also be used to define the boundary surface. Alerts can also be provided when the label electrode crosses the boundary surface and enters the exclusion region.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 2, 2022
    Inventors: Craig Markovitz, Jan O. Mangual-Soto, Chunlan Jiang, Louis-Philippe Richer, Cyrille Casset
  • Patent number: 11338146
    Abstract: A system is provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device (IMD). The system also includes one or more processors configured to determine an atrial-ventricular (AV) conduction interval (ARRV) between the A site and a first RV sensed event at the RV site, determine an inter-ventricular (VV) conduction interval (RLV-RRV) between a paced event at the LV site and a second RV sensed event at the RV site, and set a ventricular refractory period (VRP) based on at least one of the AV conduction interval or the VV conduction interval and a predetermined offset. The one or more processors are also configured to blank signals over the RV sensing channel during the VRP.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: May 24, 2022
    Assignee: Pacesetter, Inc.
    Inventor: Jan O. Mangual-Soto
  • Publication number: 20220142553
    Abstract: When generating anatomical maps (e.g., anatomical geometries and/or electrophysiology maps), it can be desirable to analyze whether or not a collected data point was collected from a region of interest. During an electrophysiology study, for example, an electroanatomical mapping system collects electrophysiology data points, each including an electrogram signal. By defining both a window of interest and a window of exclusion within the electrogram signal, the electroanatomical mapping system can analyze collected data points to determine whether or not they should be included in a map. In particular, the electroanatomical mapping system can compare the electrophysiology signal within the window of interest and the window of exclusion with respect to at least one signal parameter and add the data point to the map if the comparison satisfies at least one corresponding inclusion criterion. Applicable signal parameters include maximum peak-to-peak voltage, conduction velocity, and electrogram morphology.
    Type: Application
    Filed: February 11, 2020
    Publication date: May 12, 2022
    Inventors: Craig Markovitz, Jan O. MANGUAL-SOTO, Chun-lan JIANG, Louis-Philippe RICHER, Cyrille CASSET
  • Patent number: 11298066
    Abstract: An electrophysiology map of a portion of a patient's anatomy can be visualized using an electroanatomical mapping system. The system receives a plurality of electrophysiology data points (e.g., an electrophysiology map), which includes a plurality of electrophysiology signals. The system then creates a distribution (e.g., a histogram) for one or more characteristics of the plurality of electrophysiology signals (e.g., dominant cycle length, regular cycle length, peak-to-peak voltage, fractionation, conduction velocity, or the like). The system then analyzes the distribution to determine a display convention (e.g., a range and scale) for a graphical representation of the characteristic based on, for example, a best-fit shape of the distribution, a skew of the distribution, a range of the distribution, and/or a most dominant value of the distribution. The graphical representation can then be output according to the display convention.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: April 12, 2022
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventor: Jan O. Mangual-Soto
  • Publication number: 20220105346
    Abstract: Systems and methods are provided for detecting arrhythmias in cardiac activity is provided. The systems and methods include measuring conduction delays between an atria (A) and multiple left ventricular (LV) electrodes to obtain multiple intrinsic A/LV intervals, measuring conduction delays between a right ventricular (RV) and the multiple LV electrodes to obtain multiple intrinsic VV intervals. The systems and methods include calculating a first atrial ventricular (AV) delay based on at least one of the intrinsic A/LV intervals, and calculating a second AV delay based on at least one of the intrinsic VV intervals. The systems and methods include selecting a biventricular (BiV) pacing mode or an LV only pacing mode based on a relation between the first and second AV delays, and delivering a pacing therapy based on the selecting operation.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Jan O. Mangual-Soto, Nima Badie, Luke C. McSpadden, Jong Gill, Louis-Philippe Richer
  • Publication number: 20220105345
    Abstract: A system and method for designating between types of activation by a pulse generator configured to deliver a left ventricular (LV) pacing pulse at an LV pacing site as part of a cardiac resynchronization therapy (CRT) are provided. The system includes a sensing channel configured to collect cardiac activity (CA) signals along at least one sensing vector extending through a septal wall between the LV and right ventricle (RV). The CA signals are indicative of one or more beats and include a pre-LV pacing segment indicative of cardiac activity preceding the LV pacing pulse and a post-LV pacing segment indicative of cardiac activity following the LV pacing pulse. The system includes memory to store program instructions. One or more processors are configured to implement the program instructions to analyze the pre-LV pacing segment to identify a first myocardium activation (MA) characteristic of interest (COI).
    Type: Application
    Filed: October 7, 2020
    Publication date: April 7, 2022
    Inventors: Jan O. Mangual-Soto, Nima Badie, Luke C. McSpadden
  • Publication number: 20220080209
    Abstract: A method for controlling an adaptive pacing therapy that includes utilizing one or more processors to perform measuring an atrial-ventricular (AV) interval corresponding to an interval between an atrial paced (Ap) event or an atrial sensed (As) event and a sensed ventricular (Vs) event, setting an AV delay based on the AV interval, and measuring an S1 heart sound characteristic of interest (COI) while utilizing the AV delay in connection with delivering a pacing therapy by the IMD. The one or more processors also perform adjusting the AV delay, repeating the measuring, and adjusting to obtain a collection of S1 heart sound COIs and corresponding AV delays, selecting one of the AV delays, that corresponds to a select one of the S1 heart sound COIs, as a resultant AV delay, and managing the pacing therapy, utilized by the IMD, based on the resultant AV delay.
    Type: Application
    Filed: June 21, 2021
    Publication date: March 17, 2022
    Inventor: Jan O. Mangual-Soto
  • Publication number: 20220072303
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
  • Patent number: 11235158
    Abstract: Systems and methods are provided for detecting arrhythmias in cardiac activity is provided. The systems and methods include measuring conduction delays between an atria (A) and multiple left ventricular (LV) electrodes to obtain multiple intrinsic A/LV intervals, measuring conduction delays between a right ventricular (RV) and the multiple LV electrodes to obtain multiple intrinsic VV intervals. The systems and methods include calculating a first atrial ventricular (AV) delay based on at least one of the intrinsic A/LV intervals, and calculating a second AV delay based on at least one of the intrinsic VV intervals. The systems and methods include selecting a biventricular (BiV) pacing mode or an LV only pacing mode based on a relation between the first and second AV delays, and delivering a pacing therapy based on the selecting operation.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: February 1, 2022
    Assignee: PACESETTER, INC.
    Inventors: Jan O. Mangual-Soto, Nima Badie, Luke C. McSpadden, Jong Gill, Louis-Philippe Richer
  • Publication number: 20220020228
    Abstract: Systems and methods for modifying a geometry surface model using electrophysiology (EP) measurements are provided. A system includes a device including at least one sensor configured to collect a set of location data points, and collect EP data at a measurement point. The system further includes a computer-based model construction system coupled to the device and configured to generate an original surface based on the set of location data points, the original surface including a plurality of corner points and a plurality of surface segments extending between the plurality of corner points, modify the original surface, based on the measurement point, to generate a modified surface, and map the EP data for the measurement point to the modified surface.
    Type: Application
    Filed: February 20, 2020
    Publication date: January 20, 2022
    Inventors: Cyrille Casset, Jan O. Mangual-Soto, Louis-Philippe Richer, Chunlan Jiang, Craig Markovitz
  • Publication number: 20220008724
    Abstract: A method and device for dynamic device based AV delay adjustment are provided. The method provides electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors, in an implantable medical device (IMD), for detecting an atrial paced (Ap) event or atrial sensed (As) event. The method determines a measured AV interval corresponding to an interval between the Ap event or the As event and a ventricular sensed event and calculates a percentage-based (PB) offset based on the measured AV interval. The method automatically dynamically adjusting an AV delay, utilized by the IMD, based on the measured AV interval and the PB offset and manages a pacing therapy, utilized by the IMD, based on the AV delay after the adjusting operation.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 13, 2022
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Aditya Goil, Kyungmoo Ryu
  • Publication number: 20210401492
    Abstract: Disclosed herein is a system for assessing ablation lesions. The system includes an ablation catheter configured to ablate a target cardiac tissue site to form an ablation lesion thereon, and a mechanical probe operable to impart mechanical force to the target cardiac tissue site. The mechanical probe includes at least one sensor configured to measure a mechanical response of the target cardiac tissue site to the mechanical force. The system further includes a controller communicatively coupled to the mechanical probe, and configured to determine systolic and diastolic stiffness values of the target cardiac tissue site based on the mechanical response. The controller is further configured to determine a transmurality value of the ablation lesion based on the determined systolic and diastolic stiffness values.
    Type: Application
    Filed: February 10, 2020
    Publication date: December 30, 2021
    Inventors: Jan O. MANGUAL-SOTO, Louis-Philippe RICHER, Chunlan JIANG, Cyrille CASSET, Craig MARKOVITZ
  • Publication number: 20210379389
    Abstract: A system is provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device (IMD). The system also includes one or more processors configured to determine an atrial-ventricular (AV) conduction interval (ARRV) between the A site and a first RV sensed event at the RV site, determine an inter-ventricular (VV) conduction interval (RLV-RRV) between a paced event at the LV site and a second RV sensed event at the RV site, and set a ventricular refractory period (VRP) based on at least one of the AV conduction interval or the VV conduction interval and a predetermined offset. The one or more processors are also configured to blank signals over the RV sensing channel during the VRP.
    Type: Application
    Filed: June 8, 2020
    Publication date: December 9, 2021
    Inventor: Jan O. Mangual-Soto
  • Patent number: 11154719
    Abstract: A method and device for dynamic device based AV delay adjustment are provided. The method provides electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors, in an implantable medical device (IMD), for detecting an atrial paced (Ap) event or atrial sensed (As) event. The method determines a measured AV interval corresponding to an interval between the Ap event or the As event and a ventricular sensed event and calculates a percentage-based (PB) offset based on the measured AV interval. The method automatically dynamically adjusting an AV delay, utilized by the IMD, based on the measured AV interval and the PB offset and manages a pacing therapy, utilized by the IMD, based on the AV delay after the adjusting operation.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Aditya Goil, Kyungmoo Ryu
  • Patent number: 11027136
    Abstract: Systems and methods for His bundle pacing using a stimulation device include applying an impulse to a His bundle of a patient heart using the stimulation device. The stimulation device then measures a response of the patient heart to application of the impulse that includes a response of a ventricle of the patient heart. The stimulation device calculates a ventricular delay as a time from application of the impulse to onset of the response of the ventricle and delivers, using a lead of the stimulation device, a backup impulse to the ventricle when at least the ventricular delay exceeds a delay value stored in a memory of the stimulation device. The stored delay may, for example, correspond to a previously determined value indicative of selective or other His bundle capture.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 8, 2021
    Assignee: PACESETTER, INC.
    Inventors: Jan O. Mangual-Soto, Wenwen Li, Nima Badie, Luke C. McSpadden
  • Publication number: 20210145344
    Abstract: The signal quality of an electrophysiological signal can be determined from information regarding proximal stability of an electrophysiology catheter at the time the signal is acquired and temporal stability of the electrophysiological signal. The proximal stability information can include a distance between the electrophysiology catheter and an anatomical surface, a velocity of the electrophysiology catheter, and/or contact force between the electrophysiology catheter and the anatomical surface. Graphical representations of signal quality scores can be output to a display in order to enable visualization thereof by a practitioner.
    Type: Application
    Filed: July 11, 2018
    Publication date: May 20, 2021
    Inventors: Jan O. Mangual-Soto, Louis-Philippe Richer, Chunlan Jiang, Cyrille Casset, Craig Markovitz
  • Publication number: 20210137440
    Abstract: An electrophysiology map of a portion of a patient's anatomy can be visualized using an electroanatomical mapping system. The system receives a plurality of electrophysiology data points (e.g., an electrophysiology map), which includes a plurality of electrophysiology signals. The system then creates a distribution (e.g., a histogram) for one or more characteristics of the plurality of electrophysiology signals (e.g., dominant cycle length, regular cycle length, peak-to-peak voltage, fractionation, conduction velocity, or the like). The system then analyzes the distribution to determine a display convention (e.g., a range and scale) for a graphical representation of the characteristic based on, for example, a best-fit shape of the distribution, a skew of the distribution, a range of the distribution, and/or a most dominant value of the distribution. The graphical representation can then be output according to the display convention.
    Type: Application
    Filed: May 25, 2018
    Publication date: May 13, 2021
    Inventor: Jan O. Mangual-Soto