Patents by Inventor Jan Simon Reuning

Jan Simon Reuning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10594226
    Abstract: An adjustable zero voltage to high voltage power supply electrically receives a voltage source and electronically receives a control signal. The adjustable zero voltage to high voltage power supply includes a first modulator generator, which provides an adjustable voltage signal equivalent to the operating range of the first modulator generator. A second modulator generator receives the adjustable voltage signal and produces a modulated signal. An adjustable pulse width modulator transmits a clock signal to the second modulator generator to control a frequency of the adjustable voltage signal and cause the second modulator generator to produce a modulated signal. A plurality of integrated circuits is configured to receive a control signal and feedback a signal to the first modulator generator and the adjustable pulse width modulator to change from a fixed frequency to a variable increasing frequency.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: March 17, 2020
    Assignee: DEAN TECHNOLOGY INC.
    Inventors: Jan Simon Reuning, Braeden Reid Levine, Erik Steven Haugarth
  • Publication number: 20200052597
    Abstract: An adjustable zero voltage to high voltage power supply electrically receives a voltage source and electronically receives a control signal. The adjustable zero voltage to high voltage power supply includes a first modulator generator, which provides an adjustable voltage signal equivalent to the operating range of the first modulator generator. A second modulator generator receives the adjustable voltage signal and produces a modulated signal. An adjustable pulse width modulator transmits a clock signal to the second modulator generator to control a frequency of the adjustable voltage signal and cause the second modulator generator to produce a modulated signal. A plurality of integrated circuits is configured to receive a control signal and feedback a signal to the first modulator generator and the adjustable pulse width modulator to change from a fixed frequency to a variable increasing frequency.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 13, 2020
    Inventors: Jan Simon Reuning, Braeden Reid Levine, Erik Steven Haugarth
  • Patent number: 10496154
    Abstract: An active noise cancelling power supply to perform active noise cancelling of input power with noise to output power. The active noise cancelling power supply having a power transformation device receiving input power and converting the power to a voltage signal with a ripple. The active noise cancelling power supply has a ripple measuring device, which measures the ripple as the voltage signal with a ripple passes through the ripple measuring device producing a ripple signal. A controller with a data storage in communication with a processor, wherein computer instructions in the data storage are configured to instruct the processor to produce a first noise cancellation signal in volts or millivolts out of phase with the ripple signal and inject the first noise cancellation signal on the voltage signal with a ripple at a node forming a clean signal as output power.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: December 3, 2019
    Assignee: DEAN TECHNOLOGY, INC.
    Inventors: Lynn Edward Roszel, Craig Sean Dean, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Patent number: 10355522
    Abstract: A multi-controllable high voltage power supply having a plurality of filters, a high voltage divider, and a processor with memory. The memory contains operating set points. The processor is configured to receive scaled voltage feedback signals from the high voltage divider, compare the scaled voltage feedback signals to the plurality of operating set points in memory, compute and store revised operating set points using the compared scaled voltage feedback signal, use the revised operating set points to simultaneously and automatically regulate output voltage to be within all operating set points, and generate an alert when output conditions exceed any operating set points.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: July 16, 2019
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Publication number: 20190190313
    Abstract: A multi-controllable high voltage power supply haying a plurality of filters, a high voltage divider, and a processor with memory. The memory contains operating set points. The processor is configured to receive scaled voltage feedback signals from the high voltage divider, compare the scaled voltage feedback signals to the plurality of operating set points in memory, compute and store revised operating set points using the compared scaled voltage feedback signal, use the revised operating set points to simultaneously and automatically regulate output voltage to be within all operating set points, and generate an alert when output conditions exceed any operating set points.
    Type: Application
    Filed: July 2, 2018
    Publication date: June 20, 2019
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Patent number: 10108210
    Abstract: A digital high voltage power having a plurality of filters, a high voltage divider, and a processor with memory. The memory contains operating set points. The processor is configured to receive scaled voltage feedback signals from the high voltage divider, compare the scaled voltage feedback signals to the plurality of operating set points in memory, compute and store revised operating set points using the compared scaled voltage feedback signal, use the revised operating set points to simultaneously and automatically regulate output voltage to be within all operating set points, and generate an alert when output conditions exceed any operating set points.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: October 23, 2018
    Assignee: Dean Technology, Inc.
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Patent number: 10027227
    Abstract: A power supply with digitally compensated circuit having a plurality of integrated circuits. The plurality of integrated circuits has a digitally variable slope controller to adjust charge time of an inductor and voltage distortion and an adjustable voltage generator, which generates a modified voltage set point. The digitally compensated circuit has a comparator, which compares the modified voltage set point to a first feedback and turns off a comparator output signal when first feedback approaches or exceeds the modified voltage set point. An adjustable pulse width modulator generator produces an output voltage. A current monitor receives output voltage and provides a second feedback, which is transferred to the plurality of integrated circuits. An inductor receives output voltage and generates variable output power for a load, utilizing the digitally variable slope controller to reduce oscillation, system disturbances, and subharmonic oscillations over a dynamic voltage input range.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 17, 2018
    Assignee: Dean Technology, Inc.
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Publication number: 20180091048
    Abstract: A power supply with digitally compensated circuit having a plurality of integrated circuits. The plurality of integrated circuits has a digitally variable slope controller to adjust charge time of an inductor and voltage distortion and an adjustable voltage generator, which generates a modified voltage set point. The digitally compensated circuit has a comparator, which compares the modified voltage set point to a first feedback and turns off a comparator output signal when first feedback approaches or exceeds the modified voltage set point. An adjustable pulse width modulator generator produces an output voltage. A current monitor receives output voltage and provides a second feedback, which is transferred to the plurality of integrated circuits. An inductor receives output voltage and generates variable output power for a load, utilizing the digitally variable slope controller to reduce oscillation, system disturbances, and subharmonic oscillations over a dynamic voltage input range.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 29, 2018
    Applicant: DEAN TECHNOLOGY, INC.
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Patent number: 9866116
    Abstract: A digitally compensated circuit for a power supply having a plurality of integrated circuits. The plurality of integrated circuits has a digitally variable slope controller to adjust charge time of an inductor and voltage distortion and an adjustable voltage generator, which generates a modified voltage set point. The digitally compensated circuit has a comparator, which compares the modified voltage set point to a first feedback and turns off a comparator output signal when first feedback approaches or exceeds the modified voltage set point. An adjustable pulse width modulator generator produces an output voltage. A current monitor receives output voltage and provides a second feedback, which is transferred to the plurality of integrated circuits. An inductor receives output voltage and generates variable output power for a load, utilizing the digitally variable slope controller to reduce oscillation, system disturbances, and subharmonic oscillations over a dynamic voltage input range.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 9, 2018
    Assignee: Dean Technology, Inc.
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Publication number: 20170249001
    Abstract: An active noise cancelling power supply to perform active noise cancelling of input power with noise to output power. The active noise cancelling power supply having a power transformation device receiving input power and converting the power to a voltage signal with a ripple. The active noise cancelling power supply has a ripple measuring device, which measures the ripple as the voltage signal with a ripple passes through the ripple measuring device producing a ripple signal. A controller with a data storage in communication with a processor, wherein computer instructions in the data storage are configured to instruct the processor to produce a first noise cancellation signal in volts or millivolts out of phase with the ripple signal and inject the first noise cancellation signal on the voltage signal with a ripple at a node forming a clean signal as output power.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Applicant: DEAN TECHNOLOGY, INC.
    Inventors: Lynn Edward Roszel, Craig Sean Dean, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning
  • Publication number: 20170250602
    Abstract: A digitally compensated circuit for a power supply having a plurality of integrated circuits. The plurality of integrated circuits has a digitally variable slope controller to adjust charge time of an inductor and voltage distortion and an adjustable voltage generator, which generates a modified voltage set point. The digitally compensated circuit has a comparator, which compares the modified voltage set point to a first feedback and turns off a comparator output signal when first feedback approaches or exceeds the modified voltage set point. An adjustable pulse width modulator generator produces an output voltage. A current monitor receives output voltage and provides a second feedback, which is transferred to the plurality of integrated circuits. An inductor receives output voltage and generates variable output power for a load, utilizing the digitally variable slope controller to reduce oscillation, system disturbances, and subharmonic oscillations over a dynamic voltage input range.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Applicant: DEAN TECHNOLOGY, INC.
    Inventors: Craig Sean Dean, Lynn Edward Roszel, Scott Richard Wilson, Erik Steven Haugarth, Jan Simon Reuning