Patents by Inventor Jan Stegemann

Jan Stegemann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11575921
    Abstract: The coding efficiency of scalable video coding is increased by substituting missing spatial intra prediction parameter candidates in a spatial neighborhood of a current block of the enhancement layer by use of intra prediction parameters of a co-located block of the base layer signal. By this measure, the coding efficiency for coding the spatial intra prediction parameters is increased due to the improved prediction quality of the set of intra prediction parameters of the enhancement layer, or, more precisely stated, the increased likelihood, that appropriate predictors for the intra prediction parameters for an intra predicted block of the enhancement layer are available thereby increasing the likelihood that the signaling of the intra prediction parameter of the respective enhancement layer block may be performed, on average, with less bits.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 7, 2023
    Assignee: GE Video Compression, LLC
    Inventors: Tobias Hinz, Haricharan Lakshman, Jan Stegemann, Philipp Helle, Mischa Siekmann, Karsten Suehring, Detlev Marpe, Heiko Schwarz, Christian Bartnik, Ali Atef Ibrahim Khairat Abdelhamid, Heiner Kirchhoffer, Thomas Wiegand
  • Publication number: 20220417538
    Abstract: A video decoder is configured to decode a plurality of video frames which are subdivided into a set of one or more slices. The decoder evaluates slice type information indicating whether a slice is encoded using an independent coding mode having no prediction of video content of a current frame on the basis of a video content of a previous frame, or using a single-predictive mode having a prediction of a block of pixels on the basis of one block of pixels of a previous frame, or using a bi-predictive mode having a prediction of a block of pixels on the basis of two or more blocks of pixels of one or more previous frames, to select a mode of operation for decoding a slice. The video decoder includes an arithmetic decoder for providing a decoded binary sequence on the basis of an encoded representation of the binary sequence.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Inventors: Jan STEGEMANN, Heiner KIRCHHOFFER, Detlev MARPE, Heiko SCHWARZ, Thomas WIEGAND
  • Patent number: 11533485
    Abstract: An entropy decoder is configured to, for horizontal and vertical components of motion vector differences, derive a truncated unary code from the data stream using context-adaptive binary entropy decoding with exactly one context per bin position of the truncated unary code, which is common for horizontal and vertical components of the motion vector differences, and an Exp-Golomb code using a constant equi-probability bypass mode to obtain the binarizations of the motion vector differences. A desymbolizer is configured to debinarize the binarizations of the motion vector difference syntax elements to obtain integer values of the horizontal and vertical components of the motion vector differences. A reconstructor is configured to reconstruct a video based on the integer values of the horizontal and vertical components of the motion vector differences.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: December 20, 2022
    Assignee: GE Video Compression, LLC
    Inventors: Valeri George, Benjamin Bross, Heiner Kirchhoffer, Detlev Marpe, Tung Nguyen, Matthias Preiss, Mischa Siekmann, Jan Stegemann, Thomas Wiegand
  • Publication number: 20220400271
    Abstract: Scalable video coding is rendered more efficient by deriving/selecting a subblock subdivision to be used for enhancement layer prediction, among a set of possible subblock subdivisions of an enhancement layer block by evaluating the spatial variation of the base layer coding parameters over the base layer signal. By this measure, less of the signalization overhead has to be spent on signaling this subblock subdivision within the enhancement layer data stream, if any. The subblock subdivision thus selected may be used in predictively coding/decoding the enhancement layer signal.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 15, 2022
    Inventors: Tobias HINZ, Haricharan LAKSHMAN, Jan STEGEMANN, Philipp HELLE, Mischa SIEKMANN, Karsten SUEHRING, Detlev MARPE, Heiko SCHWARZ, Christian BARTNIK, Ali Atef Ibrahim KHAIRAT ABDELHAMID, Heiner KIRCHHOFFER, Thomas WIEGAND
  • Patent number: 11516474
    Abstract: A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initial
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 29, 2022
    Assignee: GE Video Compression, LLC
    Inventors: Valeri George, Benjamin Bross, Heiner Kirchhoffer, Detlev Marpe, Tung Nguyen, Matthias Preiss, Mischa Siekmann, Jan Stegemann, Thomas Wiegand
  • Patent number: 11477467
    Abstract: Scalable video coding is rendered more efficient by deriving/selecting a subblock subdivision to be used for enhancement layer prediction, among a set of possible subblock subdivisions of an enhancement layer block by evaluating the spatial variation of the base layer coding parameters over the base layer signal. By this measure, less of the signalization overhead has to be spent on signaling this subblock subdivision within the enhancement layer data stream, if any. The subblock subdivision thus selected may be used in predictively coding/decoding the enhancement layer signal.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: October 18, 2022
    Assignee: GE Video Compression, LLC
    Inventors: Tobias Hinz, Haricharan Lakshman, Jan Stegemann, Philipp Helle, Mischa Siekmann, Karsten Suehring, Detlev Marpe, Heiko Schwarz, Christian Bartnik, Ali Atef Ibrahim Khairat Abdelhamid, Heiner Kirchhoffer, Thomas Wiegand
  • Patent number: 11457230
    Abstract: A video decoder is configured to decode a plurality of video frames which are subdivided into a set of one or more slices. The decoder evaluates slice type information indicating whether a slice is encoded using an independent coding mode having no prediction of video content of a current frame on the basis of a video content of a previous frame, or using a single-predictive mode having a prediction of a block of pixels on the basis of one block of pixels of a previous frame, or using a bi-predictive mode having a prediction of a block of pixels on the basis of two or more blocks of pixels of one or more previous frames, to select a mode of operation for decoding a slice. The video decoder includes an arithmetic decoder for providing a decoded binary sequence on the basis of an encoded representation of the binary sequence.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: September 27, 2022
    Assignee: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Jan Stegemann, Heiner Kirchhoffer, Detlev Marpe, Heiko Schwarz, Thomas Wiegand
  • Patent number: 11431352
    Abstract: An arithmetic encoder for encoding a plurality of symbols having symbol values is configured to derive an interval size information for an arithmetic encoding of one or more symbol values to be encoded based on a plurality of state variable values representing statistics of a plurality of previously encoded symbol values with different adaptation time constants. The arithmetic encoder is configured to map a first state variable value, or a scaled and/or rounded version thereof, using a lookup-table and to map a second state variable value, or a scaled and/or rounded version thereof using the lookup-table, in order to obtain the interval size information describing an interval size for the arithmetic encoding of one or more symbols to be encoded. Further arithmetic encoders, arithmetic decoders, video encoders, video decoder, methods for encoding, methods for decoding and computer programs are also disclosed which are based on the same concept and on other concepts.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: August 30, 2022
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Heiner Kirchhoffer, Jan Stegemann, Detlev Marpe, Paul Haase, Stefan Matlage, Christian Bartnik, Heiko Schwarz, Thomas Wiegand
  • Publication number: 20220224904
    Abstract: A decoder for decoding a data stream into which media data is coded has a mode switch configured to activate a low-complexity mode or a high-efficiency mode depending on the data stream, an entropy decoding engine configured to retrieve each symbol of a sequence of symbols by entropy decoding using a selected one of a plurality of entropy decoding schemes, a desymbolizer configured to desymbolize the sequence of symbols to obtain a sequence of syntax elements, a reconstructor configured to reconstruct the media data based on the sequence of syntax elements, selection depending on the activated low-complexity mode or the high-efficiency mode.
    Type: Application
    Filed: February 1, 2022
    Publication date: July 14, 2022
    Inventors: Valeri GEORGE, Benjamin BROSS, Heiner KIRCHHOFFER, Detlev MARPE, Tung NGUYEN, Matthias PREISS, Mischa SIEKMANN, Jan STEGEMANN, Thomas WIEGAND, Christian BARTNIK
  • Patent number: 11277614
    Abstract: A decoder for decoding a data stream into which media data is coded has a mode switch configured to activate a low-complexity mode or a high-efficiency mode depending on the data stream, an entropy decoding engine configured to retrieve each symbol of a sequence of symbols by entropy decoding using a selected one of a plurality of entropy decoding schemes, a desymbolizer configured to desymbolize the sequence of symbols to obtain a sequence of syntax elements, a reconstructor configured to reconstruct the media data based on the sequence of syntax elements, selection depending on the activated low-complexity mode or the high-efficiency mode.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: March 15, 2022
    Assignee: GE Video Compression, LLC
    Inventors: Valeri George, Benjamin Bross, Heiner Kirchhoffer, Detlev Marpe, Tung Nguyen, Matthias Preiss, Mischa Siekmann, Jan Stegemann, Thomas Wiegand, Christian Bartnik
  • Publication number: 20210409739
    Abstract: A scalable video decoder is described which is configured to reconstruct a base layer signal from a coded data stream to obtain a reconstructed base layer signal; and reconstruct an enhancement layer signal including spatially or temporally predicting a portion of an enhancement layer signal, currently to be reconstructed, from an already reconstructed portion of the enhancement layer signal to obtain an enhancement layer internal prediction signal; forming, at the portion currently to be reconstructed, a weighted average of an inter-layer prediction signal obtained from the reconstructed base layer signal, and the enhancement layer internal prediction signal to obtain an enhancement layer prediction signal such that a weighting between the inter-layer prediction signal and the enhancement layer internal prediction signal varies over different spatial frequency components; and predictively reconstructing the enhancement layer signal using the enhancement layer prediction signal.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 30, 2021
    Inventors: Tobias HINZ, Haricharan LAKSHMAN, Jan STEGEMANN, Philipp HELLE, Mischa SIEKMANN, Karsten SUEHRING, Detlev MARPE, Heiko SCHWARZ, Christian BARTNIK, Ali Atef Ibrahim KHAIRAT ABDELHAMID, Heiner KIRCHHOFFER, Thomas WIEGAND
  • Patent number: 11134255
    Abstract: A scalable video decoder is described which is configured to reconstruct a base layer signal from a coded data stream to obtain a reconstructed base layer signal; and reconstruct an enhancement layer signal including spatially or temporally predicting a portion of an enhancement layer signal, currently to be reconstructed, from an already reconstructed portion of the enhancement layer signal to obtain an enhancement layer internal prediction signal; forming, at the portion currently to be reconstructed, a weighted average of an inter-layer prediction signal obtained from the reconstructed base layer signal, and the enhancement layer internal prediction signal to obtain an enhancement layer prediction signal such that a weighting between the inter-layer prediction signal and the enhancement layer internal prediction signal varies over different spatial frequency components; and predictively reconstructing the enhancement layer signal using the enhancement layer prediction signal.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: September 28, 2021
    Assignee: GE Video Compression, LLC
    Inventors: Tobias Hinz, Haricharan Lakshman, Jan Stegemann, Philipp Helle, Mischa Siekmann, Karsten Suehring, Detlev Marpe, Heiko Schwarz, Christian Bartnik, Ali Atef Ibrahim Khairat Abdelhamid, Heiner Kirchhoffer, Thomas Wiegand
  • Publication number: 20210266563
    Abstract: A scalable video decoder is described which is configured to reconstruct a base layer signal from a coded data stream to obtain a reconstructed base layer signal; and reconstruct an enhancement layer signal including spatially or temporally predicting a portion of an enhancement layer signal, currently to be reconstructed, from an already reconstructed portion of the enhancement layer signal to obtain an enhancement layer internal prediction signal; forming, at the portion currently to be reconstructed, a weighted average of an inter-layer prediction signal obtained from the reconstructed base layer signal, and the enhancement layer internal prediction signal to obtain an enhancement layer prediction signal such that a weighting between the inter-layer prediction signal and the enhancement layer internal prediction signal varies over different spatial frequency components; and predictively reconstructing the enhancement layer signal using the enhancement layer prediction signal.
    Type: Application
    Filed: July 2, 2019
    Publication date: August 26, 2021
    Inventors: Tobias HINZ, Haricharan LAKSHMAN, Jan STEGEMANN, Philipp HELLE, Mischa SIEKMANN, Karsten SUEHRING, Detlev MARPE, Heiko SCHWARZ, Christian BARTNIK, Ali Atef Ibrahim KHAIRAT ABDELHAMID, Heiner KIRCHHOFFER, Thomas WIEGAND
  • Publication number: 20210243446
    Abstract: A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initial
    Type: Application
    Filed: April 16, 2021
    Publication date: August 5, 2021
    Inventors: Valeri GEORGE, Benjamin BROSS, Heiner KIRCHHOFFER, Detlev MARPE, Tung NGUYEN, Matthias PREISS, Mischa SIEKMANN, Jan STEGEMANN, Thomas WIEGAND
  • Patent number: 11012695
    Abstract: A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initial
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: May 18, 2021
    Assignee: GE Video Compression, LLC
    Inventors: Valeri George, Benjamin Bross, Heiner Kirchhoffer, Detlev Marpe, Tung Nguyen, Matthias Preiss, Mischa Siekmann, Jan Stegemann, Thomas Wiegand
  • Publication number: 20210126650
    Abstract: An arithmetic encoder for encoding a plurality of symbols having symbol values is configured to derive an interval size information for an arithmetic encoding of one or more symbol values to be encoded based on a plurality of state variable values representing statistics of a plurality of previously encoded symbol values with different adaptation time constants. The arithmetic encoder is configured to map a first state variable value, or a scaled and/or rounded version thereof, using a lookup-table and to map a second state variable value, or a scaled and/or rounded version thereof using the lookup-table, in order to obtain the interval size information describing an interval size for the arithmetic encoding of one or more symbols to be encoded. Further arithmetic encoders, arithmetic decoders, video encoders, video decoder, methods for encoding, methods for decoding and computer programs are also disclosed which are based on the same concept and on other concepts.
    Type: Application
    Filed: January 5, 2021
    Publication date: April 29, 2021
    Inventors: Heiner Kirchhoffer, Jan Stegemann, Detlev Marpe, Paul Haase, Stefan Matlage, Christian Bartnik, Heiko Schwarz, Thomas Wiegand
  • Publication number: 20210014512
    Abstract: A video decoder is configured to decode a plurality of video frames which are subdivided into a set of one or more slices. The decoder evaluates slice type information indicating whether a slice is encoded using an independent coding mode having no prediction of video content of a current frame on the basis of a video content of a previous frame, or using a single-predictive mode having a prediction of a block of pixels on the basis of one block of pixels of a previous frame, or using a bi-predictive mode having a prediction of a block of pixels on the basis of two or more blocks of pixels of one or more previous frames, to select a mode of operation for decoding a slice. The video decoder includes an arithmetic decoder for providing a decoded binary sequence on the basis of an encoded representation of the binary sequence.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Jan STEGEMANN, Heiner KIRCHHOFFER, Detlev MARPE, Heiko SCHWARZ, Thomas WIEGAND
  • Publication number: 20210006821
    Abstract: A coding efficiency increase is achieved by using a common signalization within the bitstream with regard to activation of merging and activation of the skip mode. One possible state of one or more syntax elements within the bitstream may signalize for a current sample set of a picture that the sample set is to be merged and has no prediction residual encoded and inserted into the bitstream. A common flag may signalize whether the coding parameters associated with a current sample set are to be set according to a merge candidate or to be retrieved from the bitstream, and whether the current sample set of the picture is to be reconstructed based on a prediction signal depending on the coding parameters associated with the current sample set, without any residual data, or to be reconstructed by refining the prediction signal depending on the coding parameters associated with the current sample set by means of residual data within the bitstream.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Heiko SCHWARZ, Heiner KIRCHHOFFER, Philipp HELLE, Simon OUDIN, Jan STEGEMANN, Benjamin BROSS, Detlev MARPE, Thomas WIEGAND
  • Publication number: 20200404266
    Abstract: Scalable video coding is rendered more efficient by deriving/selecting a subblock subdivision to be used for enhancement layer prediction, among a set of possible subblock subdivisions of an enhancement layer block by evaluating the spatial variation of the base layer coding parameters over the base layer signal. By this measure, less of the signalization overhead has to be spent on signaling this subblock subdivision within the enhancement layer data stream, if any. The subblock subdivision thus selected may be used in predictively coding/decoding the enhancement layer signal.
    Type: Application
    Filed: May 11, 2020
    Publication date: December 24, 2020
    Inventors: Tobias HINZ, Haricharan LAKSHMAN, Jan STEGEMANN, Philipp HELLE, Mischa SIEKMANN, Karsten SUEHRING, Detlev MARPE, Heiko SCHWARZ, Christian BARTNIK, Ali Atef Ibrahim KHAIRAT ABDELHAMID, Heiner KIRCHHOFFER, Thomas WIEGAND
  • Patent number: 10841608
    Abstract: A coding efficiency increase is achieved by using a common signalization within the bitstream with regard to activation of merging and activation of the skip mode. One possible state of one or more syntax elements within the bitstream may signalize for a current sample set of a picture that the sample set is to be merged and has no prediction residual encoded and inserted into the bitstream. A common flag may signalize whether the coding parameters associated with a current sample set are to be set according to a merge candidate or to be retrieved from the bitstream, and whether the current sample set of the picture is to be reconstructed based on a prediction signal depending on the coding parameters associated with the current sample set, without any residual data, or to be reconstructed by refining the prediction signal depending on the coding parameters associated with the current sample set by means of residual data within the bitstream.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: November 17, 2020
    Assignee: GE VIDEO COMPRESSION, LLC
    Inventors: Heiko Schwarz, Heiner Kirchhoffer, Philipp Helle, Simon Oudin, Jan Stegemann, Benjamin Bross, Detlev Marpe, Thomas Wiegand