Patents by Inventor Jan Tebbe
Jan Tebbe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240317847Abstract: The present invention is related to agents capable of binding to and inhibiting or antagonizing the action of IL-11 and/or IL-11RA for the treatment and/or prevention of abnormal uterine bleeding, which comprises heavy menstrual bleeding, prolonged bleeding, altered bleeding pattern, dysmenorrhea, as well as of the underlying diseases leiomyoma and endometriosis and the use of the agent to inhibit menstruation. Furthermore, the invention provides novel IL-11 antibodies.Type: ApplicationFiled: February 24, 2022Publication date: September 26, 2024Applicant: BAYER AKTIENGESELLSCHAFTInventors: Maik Stefan Wilhelm OBENDORF, Frank SACHER, Jörg MÜLLER, Ralf LESCHE, Christian VOTSMEIER, Stephan MÄRSCH, Jan TEBBE, Philipp ELLINGER, Patrick Michael SMITH, Jenny FITTING, Katharina FILARSKY, Mathias GEHRMANN, Marcus KARLSTETTER, Ernst WEBER, Mark TRAUTWEIN
-
Publication number: 20240124572Abstract: The present invention is related to agents capable of binding to and inhibiting or antagonizing the action of IL-11 and/or or IL-11RA for the treatment and/or prevention of abnormal uterine bleeding, which comprises heavy menstrual bleeding, prolonged bleeding, altered bleeding pattern, dysmenorrhea, as well as of the underlying diseases leiomyoma and endometriosis and the use of the agent to inhibit menstruation. Furthermore, the invention provides novel IL-11 antibodies.Type: ApplicationFiled: February 24, 2022Publication date: April 18, 2024Inventors: Maik Stefan Wilhelm OBENDORF, Frank SACHER, Jörg MÜLLER, Ralf LESCHE, Christian VOTSMEIER, Stephan MÄRSCH, Jan TEBBE, Philipp ELLINGER, Patrick Michael SMITH, Jenny FITTING, Katharina FILARSKY, Mathias GEHRMANN, Marcus KARLSTETTER, Ernst WEBER, Mark TRAUTWEIN
-
Patent number: 11806404Abstract: The invention relates to site specific homogeneous binder drug conjugates of kinesin spindle protein inhibitors, to active metabolites of these conjugates, to processes for preparing these conjugates, to the use of these conjugates for the treatment and/or prophylaxis of diseases and to the use of these conjugates for preparing medicaments for treatment and/or prevention of diseases, in particular hyperproliferative and/or angiogenic disorders such as, for example, cancer diseases. Such treatments can be carried out as monotherapy or else in combination with other medicaments or further therapeutic measures.Type: GrantFiled: February 3, 2021Date of Patent: November 7, 2023Assignee: BAYER PHARMA AKTIENGESELLSCHAFTInventors: Hans-Georg Lerchen, Yolanda Cancho Grande, Beatrix Stelte-Ludwig, Anette Sommer, Christoph Mahlert, Anne-Sophie Rebstock, Simone Greven, Nils Griebenow, Jan Tebbe, Oliver Kensch
-
Patent number: 11578323Abstract: Aspects of this invention inter alia relate to novel systems for targeting, editing or manipulating DNA in a cell, comprising one or more heterologous vector(s) encoding a SluCas9 nuclease from Staphylococcus lugdunensis or variants thereof, and one or more guide RNAs (gRNAs), or a SluCas9 nuclease or variant thereof and one or more gRNAs.Type: GrantFiled: December 14, 2018Date of Patent: February 14, 2023Assignees: BAYER HEALTHCARE LLC, CRISPR THERAPEUTICS AGInventors: Andre Cohnen, Moritz Schmidt, Wayne Coco, Ashish Gupta, Jan Tebbe, Cindy Schulenburg, Christian Pitzler, Michael Biag Gamalinda, Sabine Jach, Florian Richter, Anup Arumughan, Corinna Saalwächter
-
Patent number: 11371056Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: March 1, 2018Date of Patent: June 28, 2022Assignee: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
-
Patent number: 11180770Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: March 1, 2018Date of Patent: November 23, 2021Assignee: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
-
Publication number: 20210252161Abstract: The invention relates to site specific homogeneous binder drug conjugates of kinesin spindle protein inhibitors, to active metabolites of these conjugates, to processes for preparing these conjugates, to the use of these conjugates for the treatment and/or prophylaxis of diseases and to the use of these conjugates for preparing medicaments for treatment and/or prevention of diseases, in particular hyperproliferative and/or angiogenic disorders such as, for example, cancer diseases. Such treatments can be carried out as monotherapy or else in combination with other medicaments or further therapeutic measures.Type: ApplicationFiled: February 3, 2021Publication date: August 19, 2021Inventors: Hans-Georg LERCHEN, Yolanda CANCHO GRANDE, Beatrix STELTE-LUDWIG, Anette SOMMER, Christoph MAHLERT, Anne-Sophie REBSTOCK, Simone GREVEN, Nils GRIEBENOW, Jan TEBBE, Oliver KENSCH
-
Publication number: 20210147504Abstract: The present invention relates to an antibody or a fragment thereof comprising at least one heterologous amino acid sequence incorporated within at least one CDR region of said antibody or fragment thereof, wherein said at least one heterologous amino acid sequence comprises an N-terminal linker sequence (Ntls), a Brain Natriuretic Peptide (BNP) and a C-terminal linker sequence (Ctls). Optionally, at least a portion of said at least one CDR region is replaced by said at least one heterologous amino acid sequence incorporated therein. The present invention further relates to such antibody or fragment thereof for use in a method for treatment, a composition comprising such antibody or fragment thereof, a nucleic acid or a mixture of nucleic acids encoding such antibody or fragment thereof, a host cell comprising such nucleic acid or such mixture of nucleic acids and to a process for producing such antibody or fragment thereof.Type: ApplicationFiled: April 10, 2019Publication date: May 20, 2021Applicant: Bayer AktiengesellschaftInventors: Damian BROCKSCHNIEDER, Jan TEBBE, Andreas WILMEN, Frank WUNDER
-
Publication number: 20210139555Abstract: The present invention relates to an antibody or a fragment thereof comprising at least one heterologous amino acid sequence incorporated within at least one CDR region of said antibody or fragment thereof, wherein said at least one heterologous amino acid sequence comprises an N-terminal linker sequence (Nils), an Atrial Natriuretic Peptide (ANP) and a C-terminal linker sequence (Ctls). Optionally, at least a portion of said at least one CDR region is replaced by said at least one heterologous amino acid sequence incorporated therein. The present invention further relates to such antibody or fragment thereof for use in a method for treatment, a composition comprising such antibody or fragment thereof, a nucleic acid or a mixture of nucleic acids encoding such antibody or fragment thereof, a host cell comprising such nucleic acid or such mixture of nucleic acids and to a process for producing such antibody or fragment thereof.Type: ApplicationFiled: April 10, 2019Publication date: May 13, 2021Applicant: Bayer AktiengesellschaftInventors: Anke MAYER-BARTSCHMID, Damian BROCKSCHNIEDER, Marcel GEERTZ, Simone GREVEN, Lucas Hudson HOFMEISTER, Hannah JÖRISSEN, Christoph MAHLERT, Tobias MARQUARDT, Ilka MATHAR, Thomas MONDRITZKI, Claudia NOACK, Jan TEBBE, Stuart WALSH, Ernst WEBER, Andreas WILMEN, Frank WUNDER
-
Patent number: 10973923Abstract: The invention relates to site specific homogeneous binder drug conjugates of kinesin spindle protein inhibitors, to active metabolites of these conjugates, to processes for preparing these conjugates, to the use of these conjugates for the treatment and/or prophylaxis of diseases and to the use of these conjugates for preparing medicaments for treatment and/or prevention of diseases, in particular hyperproliferative and/or angiogenic disorders such as, for example, cancer diseases. Such treatments can be carried out as monotherapy or else in combination with other medicaments or further therapeutic measures.Type: GrantFiled: June 20, 2016Date of Patent: April 13, 2021Assignee: BAYER PHARMA AKTIENGESELLSCHAFTInventors: Hans-Georg Lerchen, Yolanda Cancho Grande, Beatrix Stelte-Ludwig, Anette Sommer, Christoph Mahlert, Anne-Sophie Rebstock, Simone Greven, Nils Griebenow, Jan Tebbe, Oliver Kensch
-
Publication number: 20210079056Abstract: The present invention relates to an antibody or a fragment thereof comprising at least one heterologous amino acid sequence incorporated within at least one CDR region of said antibody or fragment thereof, wherein said at least one heterologous amino acid sequence comprises an N-terminal linker sequence (Ntls), a C-Type Natriuretic Peptide (CNP) and a C-terminal linker sequence (Ctls). Optionally, at least a portion of said at least one CDR region is replaced by said at least one heterologous amino acid sequence incorporated therein. The present invention further relates to such antibody or fragment thereof for use in a method for treatment, a composition comprising such antibody or fragment thereof, a nucleic acid or a mixture of nucleic acids encoding such antibody or fragment thereof, a host cell comprising such nucleic acid or such mixture of nucleic acids and to a process for producing such antibody or fragment thereof.Type: ApplicationFiled: April 10, 2019Publication date: March 18, 2021Applicant: Bayer AktiengesellschaftInventors: Damian BROCKSCHNIEDER, Lucas Hudson HOFMEISTER, Claudia NOACK, Jan TEBBE, Stuart WALSH, Andreas WILMEN, Frank WUNDER
-
Publication number: 20210054353Abstract: Aspects of this invention, inter alia, relate to novel systems for targeting, editing or manipulating DNA in a cell, using novel synthetic RNA-guided nucleases (sRGNs). The sRGNs are derived from wildtype or parental small type II CRISPR Cas9 endonucleases.Type: ApplicationFiled: March 19, 2019Publication date: February 25, 2021Inventors: Andre COHNEN, Moritz SCHMIDT, Wayne COCO, Michael Biag GAMALINDA, Ashish GUPTA, Christian PITZLER, Florian RICHTER, Jan TEBBE, Christopher CHENG, Ryo TAKEUCHI, Caroline W. REISS
-
Publication number: 20200385720Abstract: Aspects of this invention inter alia relate to novel systems for targeting, editing or manipulating DNA in a cell, comprising one or more heterologous vector(s) encoding a SluCas9 nuclease from Staphylococcus lugdunensis or variants thereof, and one or more guide RNAs (gRNAs), or a SluCas9 nuclease or variant thereof and one or more gRNAs.Type: ApplicationFiled: December 14, 2018Publication date: December 10, 2020Inventors: Andre COHNEN, Moritz SCHMIDT, Wayne COCO, Ashish GUPTA, Jan TEBBE, Cindy SCHULENBURG, Christian PITZLER, Michael Biag GAMALINDA, Sabine JACH, Florian RICHTER, Anup ARUMUGHAN, Corinna SAALWÄCHTER
-
Publication number: 20200239905Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: March 1, 2018Publication date: July 30, 2020Applicant: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
-
Patent number: 10597674Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: September 8, 2016Date of Patent: March 24, 2020Assignee: BASF Agricultural Solutions Seed, US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Jan Tebbe, Wayne Coco, Michael Strerath, Ernst Weber, Nikolaus Pawlowski, Sandra Geske, Heike Balven-Ross, Nina Wobst, Christina Thies, Manuel Dubald
-
Publication number: 20200063155Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: March 1, 2018Publication date: February 27, 2020Applicant: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
-
Publication number: 20190262463Abstract: The invention relates to site specific homogeneous binder drug conjugates of kinesin spindle protein inhibitors, to active metabolites of these conjugates, to processes for preparing these conjugates, to the use of these conjugates for the treatment and/or prophylaxis of diseases and to the use of these conjugates for preparing medicaments for treatment and/or prevention of diseases, in particular hyperproliferative and/or angiogenic disorders such as, for example, cancer diseases. Such treatments can be carried out as monotherapy or else in combination with other medicaments or further therapeutic measures.Type: ApplicationFiled: June 20, 2016Publication date: August 29, 2019Applicant: BAYER PHARMA AKTIENGESELLSCHAFTInventors: Hans-Georg LERCHEN, Yolanda CANCHO GRANDE, Beatrix STELTE-LUDWIG, Anette SOMMER, Christoph MAHLERT, Anne-Sophie REBSTOCK, Simone GREVEN, Nils GRIEBENOW, Jan TEBBE, Oliver KENSCH
-
Publication number: 20180208937Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: September 8, 2016Publication date: July 26, 2018Inventors: Marc Linka, Fabien POREE, Bernd LABER, Gudrun LANGE, Jan TEBBE, Wayne COCO, Michael STRERATH, Ernst WEBER, Nikolaus PAWLOWSKI, Sandra GESKE, Heike BALVEN-ROSS, Nina WOBST, Christina THIES, Manuel DUBALD
-
Patent number: RE47150Abstract: Isolated monoclonal antibodies that bind human tissue factor pathway inhibitor (TFPI) are provided. Isolated nucleic acid molecules encoding monoclonal antibodies that bind TFPI are also contemplated. Pharmaceutical compositions comprising the anti-TFPI monoclonal antibodies and methods of treating deficiencies or defects in coagulation by administration of the antibodies are also provided. Methods of producing the antibodies are also provided.Type: GrantFiled: July 12, 2016Date of Patent: December 4, 2018Assignee: Bayer HealthCare LLCInventors: Zhuozhi Wang, Junliang Pan, Joanna Grudzinska-Goebel, Christian Votsmeier, Jan Tebbe, Joerg Birkenfeld, Nina Wobst, Simone Brückner, Susanne Steinig, Peter Scholz
-
Patent number: RE49099Abstract: Provided are humanized antibodies that selectively bind to and inhibit activated protein C without binding to or inhibiting unactivated protein C. Methods of treatment employing these antibodies are described herein.Type: GrantFiled: May 22, 2019Date of Patent: June 7, 2022Assignee: Bayer Healthcare LLCInventors: Xiao-Yan Zhao, Zhuozhi Wang, Ji-Yun Kim, Ying Zhu, Jan Tebbe