Patents by Inventor Jan-Uwe Schmidt

Jan-Uwe Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9164277
    Abstract: The force on the electrodes of an electrostatic field is used so that lateral tensile or compressive forces result which can deform a deformable element or can strongly deflect a deflectable structure. For this, a micromechanical device includes, apart from an electrode and a deformable element, an insulating spacer layer via which the electrode is fixed to the deformable element, wherein the insulating spacer layer is structured into several spaced-apart segments along a lateral direction, so that by applying an electric voltage between the electrode and the deformable element lateral tensile or compressive forces bending the deformable element along the lateral direction result. Thereby, the problem that normally accompanies electrostatic drives, namely the problem of the pull-in effect, is overcome. The deflection of the deformable element can be much larger than the gaps of the two electrodes, i.e. the above-mentioned electrode and the deformable element. A usage as a sensor is also possible.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: October 20, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Holger Conrad, Harald Schenk, Christian Schirrmann, Thilo Sandner, Fabian Zimmer, Jan-Uwe Schmidt
  • Publication number: 20130301101
    Abstract: The force on the electrodes of an electrostatic field is used so that lateral tensile or compressive forces result which can deform a deformable element or can strongly deflect a deflectable structure. For this, a micromechanical device includes, apart from an electrode and a deformable element, an insulating spacer layer via which the electrode is fixed to the deformable element, wherein the insulating spacer layer is structured into several spaced-apart segments along a lateral direction, so that by applying an electric voltage between the electrode and the deformable element lateral tensile or compressive forces bending the deformable element along the lateral direction result. Thereby, the problem that normally accompanies electrostatic drives, namely the problem of the pull-in effect, is overcome. The deflection of the deformable element can be much larger than the gaps of the two electrodes, i.e. the above-mentioned electrode and the deformable element. A usage as a sensor is also possible.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 14, 2013
    Inventors: Holger CONRAD, Harald SCHENK, Christian SCHIRRMANN, Thilo SANDNER, Fabian ZIMMER, Jan-Uwe SCHMIDT
  • Publication number: 20080068704
    Abstract: The invention relates to micromechanical mirrors with a high-reflection coating for the deep-ultraviolet (DUV) and vacuum-ultraviolet (VUV) spectral range, based on a substrate which is coated with an aluminium layer and a transparent blooming coating. Likewise the invention relates to a method for the production of such micromechanical layers with a high-reflection coating and to the use thereof for the production of microsensors, optical data stores or video and data projection displays.
    Type: Application
    Filed: June 27, 2005
    Publication date: March 20, 2008
    Applicant: Fraunhofer-Gesellschaft zur Forderung Der Angewandten Forschung E.V.
    Inventors: Jan-Uwe Schmidt, Thilo Sandner, Harald Schenk, Alexandre Gatto, Minghong Yang, Jorg Heber, Norbert Kaiser