Patents by Inventor Jan Van Houdt

Jan Van Houdt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968841
    Abstract: A ferroelectric device, for instance, a metal-ferroelectric-metal (MFM) capacitor, a ferroelectric random access memory (Fe-RAM), or a ferroelectric field effect transistor (FeFET), is provided. In one aspect, the ferroelectric device is based on hafnium zirconate (HZO). The ferroelectric device can include a first electrode and a second electrode, and a doped HZO layer, which is arranged between the first electrode and the second electrode. The doped HZO layer can include a ferroelectric layer and at least two non-zero remnant polarization charge states. The doped HZO layer can be doped with at least two different elements selected from the lanthanide series, or with a combination of at least one element selected from the lanthanide series and at least one rare earth element.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: April 23, 2024
    Assignee: IMEC vzw
    Inventors: Mihaela Ioana Popovici, Amey Mahadev Walke, Jan Van Houdt
  • Publication number: 20240015984
    Abstract: The present disclosure generally relates to a ferroelectric device, and more particularly to a ferroelectric device including a layer stack. According to embodiments, the ferroelectric device comprises a first electrode and a second electrode, and the layer stack arranged between the first electrode and the second electrode. The layer stack comprises a titanium oxide layer, a doped HZO layer arranged on the titanium oxide layer, and a niobium oxide layer arranged on the doped HZO layer.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 11, 2024
    Inventors: Mihaela Ioana Popovici, Jasper Bizindavyi, Jan Van Houdt, Romain Delhougne
  • Publication number: 20230262990
    Abstract: The present disclosure relates to memory devices, in particular, flash memory devices, storage class memory (SCM) devices or dynamic random access memory (DRAM) devices. The disclosure provides a memory device with a ferroelectric trapping layer. In particular, a memory cell for the memory device comprises a layer stack including: a semiconductor layer; a tunnel layer provided directly on the semiconductor layer; a ferroelectric trapping layer provided directly on the tunnel layer; and a conductive gate layer provided directly on the ferroelectric trapping layer. A blocking layer between the ferroelectric trapping layer and the gate layer may be omitted.
    Type: Application
    Filed: August 4, 2022
    Publication date: August 17, 2023
    Inventor: Jan Van Houdt
  • Publication number: 20230197807
    Abstract: The present disclosure provides a ferroelectric field-effect transistor comprising: a substrate comprising a source region, a channel, and a drain region; a ferroelectric material arranged on a first portion of the channel and a portion of the drain region; a program gate arranged on the ferroelectric material and being at least coextensive with the first portion of the channel; a gate dielectric arranged on a portion of the source region and a second portion of the channel; and a select gate arranged on the gate dielectric and being at least coextensive with said portion of the source region and the second portion of the channel; wherein a well of the substrate extending under the whole channel has a uniform doping level.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 22, 2023
    Inventor: Jan Van Houdt
  • Publication number: 20230200078
    Abstract: Example embodiments relate to ferroelectric devices. An example ferroelectric device layer structure includes a first electrode. The ferroelectric device layer structure also includes a second electrode. Additionally, the ferroelectric device layer structure includes a ferroelectric layer of hafnium zirconate (HZO). Further, the ferroelectric device layer structure includes an oxide layer of Nb2O5 or Ta2O5 arranged on the ferroelectric layer. The ferroelectric layer and the oxide layer are arranged between the first electrode and the second electrode.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Inventors: Mihaela Ioana Popovici, Jan Van Houdt, Amey Mahadev Walke, Gouri Sankar Kar, Jasper Bizindavyi
  • Publication number: 20220328510
    Abstract: The disclosed technology generally relates to memory structures, for example for a vertical NAND memory. In one aspect, a memory structure includes a substrate and a layer stack arranged on a surface of the substrate, wherein the layer stack includes one or more conductive material layers alternating with one or more dielectric material layers. The memory structure can also include a trench in the layer stack, wherein the trench is formed through the one or more conductive material layers, and wherein the trench includes inner side walls. The memory structure also includes a programmable material layer arranged in the trench and which covers the inner side walls of the trench. The memory structure further includes an oxide semiconductor layer arranged in the trench over the programmable material layer.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 13, 2022
    Inventor: Jan Van Houdt
  • Publication number: 20220254795
    Abstract: A ferroelectric device, for instance, a metal-ferroelectric-metal (MFM) capacitor, a ferroelectric random access memory (Fe-RAM), or a ferroelectric field effect transistor (FeFET), is provided. In one aspect, the ferroelectric device is based on hafnium zirconate (HZO). The ferroelectric device can include a first electrode and a second electrode, and a doped HZO layer, which is arranged between the first electrode and the second electrode. The doped HZO layer can include a ferroelectric layer and at least two non-zero remnant polarization charge states. The doped HZO layer can be doped with at least two different elements selected from the lanthanide series, or with a combination of at least one element selected from the lanthanide series and at least one rare earth element.
    Type: Application
    Filed: February 7, 2022
    Publication date: August 11, 2022
    Inventors: Mihaela Ioana Popovici, Amey Mahadev Walke, Jan Van Houdt
  • Patent number: 11296117
    Abstract: The disclosed technology relates generally to semiconductor memory devices, and more particularly to three-dimensional (3D) ferroelectric memory devices, methods of fabricating 3D ferroelectric memory devices, and methods of conditioning 3D ferroelectric memory devices. The 3D ferroelectric memory device exploits programmed memory cells as selector devices. In one aspect, a 3D ferroelectric memory device comprises a stack comprising a plurality of gate electrode layers and spacer layers, which are alternatingly arranged. The 3D ferroelectric memory device additionally comprises a semiconductor channel extending through the stack and a ferroelectric layer arranged between the gate electrode layers and the semiconductor channel. The gate electrode layers form, in combination with the channel and the ferroelectric layer, a string of ferroelectric transistors, wherein each ferroelectric transistor is associated with one cell of the memory device.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: April 5, 2022
    Assignee: IMEC vzw
    Inventor: Jan Van Houdt
  • Patent number: 11211108
    Abstract: The disclosed technology generally relates to a memory device, and more particularly to a ferroelectric memory device and a method of operating the memory device. According to one aspect, a memory device comprises a bit cell. The bit cell comprises a write transistor, a read transistor and a ferroelectric capacitor. A write word line is connected to a gate terminal of the write transistor. A write bit line is connected to a first terminal of the write transistor. A read bit line connected to a terminal of the read transistor. A first control line is connected to a first electrode of the ferroelectric capacitor. A second terminal of the write transistor is connected to the gate terminal of the read transistor, and a second electrode of the ferroelectric capacitor is connected to the second terminal.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 28, 2021
    Assignee: IMEC vzw
    Inventor: Jan Van Houdt
  • Patent number: 11211404
    Abstract: The disclosed technology is generally directed to semiconductor integrated circuit devices and more particularly to a three-transistor random access memory (3T RAM) device, and a method of fabricating and operating the same. In one aspect, a 3T RAM cell includes a ferroelectric-based field effect transistor (FeFET) having a first gate connected as a storage node and a second transistor connected between the FeFET and a read bit line having a second gate connected to a read word line. The 3T RAM cell also includes a third transistor connected between the storage node and a write bit line having a third gate connected to a write word line.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: December 28, 2021
    Assignee: IMEC vzw
    Inventors: Shairfe Muhammad Salahuddin, Jan Van Houdt, Julien Ryckaert, Alessio Spessot
  • Publication number: 20210175254
    Abstract: The disclosed technology relates generally to semiconductor memory devices, and more particularly to three-dimensional (3D) ferroelectric memory devices, methods of fabricating 3D ferroelectric memory devices, and methods of conditioning 3D ferroelectric memory devices. The 3D ferroelectric memory device exploits programmed memory cells as selector devices. In one aspect, a 3D ferroelectric memory device comprises a stack comprising a plurality of gate electrode layers and spacer layers, which are alternatingly arranged. The 3D ferroelectric memory device additionally comprises a semiconductor channel extending through the stack and a ferroelectric layer arranged between the gate electrode layers and the semiconductor channel. The gate electrode layers form, in combination with the channel and the ferroelectric layer, a string of ferroelectric transistors, wherein each ferroelectric transistor is associated with one cell of the memory device.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 10, 2021
    Inventor: Jan Van Houdt
  • Patent number: 10672894
    Abstract: The disclosed technology generally relates to methods of fabricating a semiconductor device, and more particularly to methods of fabricating a ferroelectric field-effect transistor (FeFET). According to one aspect, a method of fabricating a FeFET includes forming a layer stack on a gate structure, wherein forming the layer stack comprises a ferroelectric layer followed by forming a sacrificial stressor layer. The method additionally includes heat-treating the layer stack to cause a phase transition in the ferroelectric layer. The method additionally includes, subsequent to the heat treatment, replacing the sacrificial stressor layer with a two-dimensional (2D) material channel layer. The method further includes forming a source contact and a drain contact contacting the 2D material channel layer.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: June 2, 2020
    Assignee: IMEC vzw
    Inventors: Jan Van Houdt, Hanns Christoph Adelmann, Han Chung Lin
  • Publication number: 20200083234
    Abstract: The disclosed technology is generally directed to semiconductor integrated circuit devices and more particularly to a three-transistor random access memory (3T RAM) device, and a method of fabricating and operating the same. In one aspect, a 3T RAM cell includes a ferroelectric-based field effect transistor (FeFET) having a first gate connected as a storage node and a second transistor connected between the FeFET and a read bit line having a second gate connected to a read word line. The 3T RAM cell also includes a third transistor connected between the storage node and a write bit line having a third gate connected to a write word line.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 12, 2020
    Inventors: Shairfe Muhammad Salahuddin, Jan Van Houdt, Julien Ryckaert, Alessio Spessot
  • Publication number: 20200006380
    Abstract: The disclosed technology relates generally to semiconductor devices and more particularly to three dimensional semiconductor memory devices, such as vertical three dimensional non-volatile memory devices. In one aspect, a vertical three-dimensional semiconductor memory device comprises a memory block comprising at least one memory hole formed through a stack of alternating layers of control gate layers and dielectric layers, wherein the memory hole is filled with a plurality of materials forming at least one memory cell. The semiconductor memory device additionally includes at least one trench formed through the stack so as to define part of a boundary of the memory block, wherein a sidewall of the trench comprises the control gate layers each having at least a portion that is in part laterally recessed relative to vertically adjacent dielectric layers, and wherein the trench is filled with an electrically conductive material.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 2, 2020
    Inventors: Jan Van Houdt, Pieter Blomme
  • Patent number: 10522624
    Abstract: A method of fabricating a vertical channel 3D semiconductor memory device is disclosed. In one aspect, the method comprises providing a stack of alternating layers of conductive material and dielectric material on a major surface of substrate, providing in the stack at least one trench, having sloped sidewalls sloping towards the major surface, extending at least below the lowest layer of conductive material, forming, in order, a programmable material, a channel liner, and a filler material on the sidewalls of the trench. Thereby, the method forms a memory string, and an electrode to the channel liner at opposite ends of the memory string.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: December 31, 2019
    Assignee: IMEC vzw
    Inventor: Jan Van Houdt
  • Patent number: 10418377
    Abstract: The disclosed technology relates generally to semiconductor devices and more particularly to three dimensional semiconductor memory devices, such as vertical three dimensional non-volatile memory devices. In one aspect, a method of fabricating a memory device comprises providing, on a substrate, an alternating stack of control gate layers and dielectric layers. The method additionally includes forming a memory block. comprising forming at least one memory hole through the alternating stack, where the at least one memory hole comprises on its sidewalls a stack of a programmable material, a channel material and a dielectric material, thereby forming at least one memory cell. The method additionally comprises removing a portion of the alternating stack to form at least one trench, where the at least one trench forms at least part of a boundary of the memory block.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: September 17, 2019
    Assignee: IMEC vzw
    Inventors: Jan Van Houdt, Pieter Blomme
  • Patent number: 10403627
    Abstract: The disclosed technology relates to a memory device for a dynamic random access memory, or DRAM. In one aspect, the memory device includes a substrate supporting a semiconductor device layer in which a plurality of semiconductor devices are formed. The memory device may further include an interconnection portion formed above the substrate and including a number of metallization levels and dielectric layers, the interconnection portion being adapted to interconnect said semiconductor devices. The memory device may further include a plurality of bit cell stacks arranged in the interconnection portion, each bit cell stack including a plurality of bit cells. Further, such bit cells may include elements such as a charge storage element, a write transistor, and a read transistor.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 3, 2019
    Assignee: IMEC vzw
    Inventors: Jan Van Houdt, Julien Ryckaert, Hyungrock Oh
  • Publication number: 20190206474
    Abstract: The disclosed technology generally relates to a memory device, and more particularly to a ferroelectric memory device and a method of operating the memory device. According to one aspect, a memory device comprises a bit cell. The bit cell comprises a write transistor, a read transistor and a ferroelectric capacitor. A write word line is connected to a gate terminal of the write transistor. A write bit line is connected to a first terminal of the write transistor. A read bit line connected to a terminal of the read transistor. A first control line is connected to a first electrode of the ferroelectric capacitor. A second terminal of the write transistor is connected to the gate terminal of the read transistor, and a second electrode of the ferroelectric capacitor is connected to the second terminal.
    Type: Application
    Filed: December 19, 2018
    Publication date: July 4, 2019
    Inventor: Jan Van Houdt
  • Publication number: 20190198638
    Abstract: The disclosed technology generally relates to methods of fabricating a semiconductor device, and more particularly to methods of fabricating a ferroelectric field-effect transistor (FeFET). According to one aspect, a method of fabricating a FeFET includes forming a layer stack on a gate structure, wherein forming the layer stack comprises a ferroelectric layer followed by forming a sacrificial stressor layer. The method additionally includes heat-treating the layer stack to cause a phase transition in the ferroelectric layer. The method additionally includes, subsequent to the heat treatment, replacing the sacrificial stressor layer with a two-dimensional (2D) material channel layer. The method further includes forming a source contact and a drain contact contacting the 2D material channel layer.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 27, 2019
    Inventors: Jan Van Houdt, Hanns Christoph Adelmann, Han Chung Lin
  • Publication number: 20190198080
    Abstract: According to one aspect, a ferroelectric field effect transistor (FeFET) memory device and a method of programming the device is disclosed. The FeFET is configured such that a ferroelectric memory region of the FeFET is programmable by an electric field applied between a gate structure and a source region and a drain region through the ferroelectric region.
    Type: Application
    Filed: November 20, 2018
    Publication date: June 27, 2019
    Inventors: Shairfe Muhammad Salahuddin, Alessio Spessot, Jan Van Houdt, Julien Ryckaert