Patents by Inventor Jan-Willem Brouwer

Jan-Willem Brouwer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9550208
    Abstract: A multistage method for treatment of composite metal structures containing metallic surfaces of aluminum, zinc and optionally iron, is provide wherein in a first step, selective zinc phosphating of zinc and ferrous surfaces proceeds using a phosphating solution containing a quantity of water-soluble inorganic silicon compounds sufficient to suppress white spot formation on zinc, but less than the quantity where zinc phosphating loses selectivity. In a following second step, aluminum surfaces are passivated with an acidic treatment solution. Also provided is a zinc phosphating solution suitable for said method containing at least 0.025 g/l, but less than 1 g/l of silicon as water-soluble inorganic compounds calculated as SiF6, wherein the product (Si/mM)·(F/mM) of the concentration of silicon [Si in mM] in the form of water-soluble inorganic compounds and the concentration of free fluoride [F in mM] divided by the free acid point number is no greater than 5.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: January 24, 2017
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Frank-Oliver Pilarek, Matthias Hamacher, Marc Balzer, Roland Popp
  • Patent number: 9534301
    Abstract: The present invention relates to the field of phosphating for corrosion-protective pretreatment of zinc surfaces, being directed toward the use of largely nickel- and cobalt-free zinc phosphating solutions. The present invention makes available an alternative to trication zinc phosphating, in which the zinc surfaces of a component are firstly, before zinc phosphating, passivated with an alkaline composition containing iron(III) ions, and thereby preconditioned for a largely nickel- and cobalt-free zinc phosphating operation. In a further aspect, the invention relates to a component, in particular an automobile body, that comprises at least in part surfaces made of zinc, the zinc surfaces being covered by a two-layer system made up of a first, inner passive layer containing iron and resting on the zinc surface, and a second, outer crystalline zinc phosphate layer resting on the inner layer.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: January 3, 2017
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Frank-Oliver Pilarek, Rainer Scheffel
  • Patent number: 9228088
    Abstract: The present invention relates to an aqueous alkaline composition (A) for alkaline passivation of metallic components comprising at least in part surfaces of zinc or zinc alloys, containing iron(III) ions, phosphate ions, and one or more complexing agents, where a free alkalinity ranges from 1 to 6 points, and the pH is at least 11. The aqueous compositions (A) can additionally contain nonionic surfactants, so that such compositions are suitable for use in a method in which both cleaning and alkaline passivation of the metallic component occur in one step. The present invention further relates to a method for alkaline passivation of metallic components by contacting them with composition (A), and further a method for surface treatment in automobile body production, in which the alkaline passivation step using composition (A) is followed by an acid passivation step using a composition (B).
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: January 5, 2016
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Kroemer, William E. Fristad, Annette Willer
  • Patent number: 9079787
    Abstract: A method for recovering demineralized water from zirconium-containing rinse water having a pH lower than 6.0, wherein a) the rinse water has added to it an aqueous solution of Ca(OH)2 containing no more than 0.1 wt % undissolved Ca(OH)2, in a quantity such that the pH of the rinse water rises to a value in the range from 6.2 to 8.0, b) a precipitate that forms is separated from the rinse water, and c) the rinse water from which the precipitate was removed in step b) is subjected to an ion exchange method or to reverse osmosis.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 14, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer
  • Publication number: 20150176138
    Abstract: The present invention relates to a method for serial surface treatment of metallic components comprising aluminum surfaces, wherein an alkaline pretreatment is followed by a conversion treatment. According to the invention, the intention during the alkaline pretreatment is that a maximum value for the concentration of dissolved zinc is not exceeded, in order to ensure a sufficient quality of the corrosion-protective coating on the aluminum surface of the components following the surface treatment. In a preferred embodiment, the content of dissolved zinc is effectively held below the respective bath-typical maximum value of dissolved zinc by the addition of compounds constituting a source of sulfide ions. The functionality of the surface treatment can be additionally increased by likewise controlling the content of dissolved aluminum in the alkaline pretreatment such that, by adding compounds constituting a source for silicate anions, a threshold value for dissolved aluminum is not exceeded.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Jan-Willem BROUWER, Frank-Oliver PILAREK, Kirsten Agnes LILL, Fernando Jose RESANO ARTALEJO, Natascha HENZE
  • Patent number: 8956468
    Abstract: The invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations thereof, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates of the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer
  • Patent number: 8815021
    Abstract: The present invention relates to a chromium-free aqueous agent based on water-soluble compounds of titanium and/or zirconium and a source of fluoride ions, copper ions and metal ions selected from the group consisting of calcium, magnesium, aluminum, boron, zinc, iron, manganese and/or tungstene and to a method for the anti-corrosive conversion treatment of metal surfaces. The chromium-free aqueous agent is suitable for the treatment of various metal materials, joined in composite structures, amongst others of steel or galvanized steel or the alloys thereof or any combinations of said materials. Furthermore, surfaces of aluminum and alloys thereof can be treated in an anti-corrosive manner using the agent according to the invention. The anti-corrosive treatment is intended in particular as a pretreatment for a subsequent dip-coating.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 26, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Kroemer, Sophie Cornen, Michael Frank, Nicole Teubert, Franz-Adolf Czika
  • Patent number: 8801871
    Abstract: The present invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations of these materials, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates with regard to the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 12, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer
  • Patent number: 8715403
    Abstract: The invention relates to an acidic, aqueous, chromium-free composition (A) for the anti-corrosive treatment of steel and/or galvanized steel surfaces comprising metal ions (M) selected from ions at least of the elements nickel, cobalt, molybdenum, iron or tin and a multi-stage method applying the composition (A) for the anti-corrosive pre-treatment of metal components which have steel and/or galvanized steel surfaces. The invention further relates to metal surfaces of zinc or iron having a passive layer system comprising at least 30 mg/m2 nickel and at least 10 mg/m2 zircon, titanium and/or hafnium and sulfur, wherein nickel is present in metallic form at up to at least 30 At. %, obtainable in a method according to the invention.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Frank-Oliver Pilarek, Jens Krömer, William E. Fristad, Helene Maechel
  • Patent number: 8679586
    Abstract: The present invention relates to a method for improving the corrosion-protecting pre-treatment of metal surfaces and using rinse water in a manner to conserve resources in such a corrosion-protecting pre-treatment, comprising a conversion treatment step using an aqueous composition comprising at least 50 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds at a pH value of 3 to 5.5, wherein a minimum fraction of 10 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds is present in the last pre-rinse step and a portion of the aqueous composition of the conversion treatment step is contained in the first post-rinse step. The resource-conserving use of the rinse water is accomplished according to the invention by way of a cascaded return of rinse water from the last rinse step to the first rinse step.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Franz-Adolf Czika, Sophie Cornen, Jens Kroemer, Michael Frank, Nicole Teubert, Jan-Willem Brouwer
  • Publication number: 20140023882
    Abstract: The present invention relates to the field of phosphating for corrosion-protective pretreatment of zinc surfaces, being directed toward the use of largely nickel- and cobalt-free zinc phosphating solutions. The present invention makes available an alternative to trication zinc phosphating, in which the zinc surfaces of a component are firstly, before zinc phosphating, passivated with an alkaline composition containing iron(III) ions, and thereby preconditioned for a largely nickel- and cobalt-free zinc phosphating operation. In a further aspect, the invention relates to a component, in particular an automobile body, that comprises at least in part surfaces made of zinc, the zinc surfaces being covered by a two-layer system made up of a first, inner passive layer containing iron and resting on the zinc surface, and a second, outer crystalline zinc phosphate layer resting on the inner layer.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 23, 2014
    Inventors: Jan-Willem Brouwer, Frank-Oliver Pilarek, Rainer Scheffel
  • Publication number: 20130202800
    Abstract: The present invention relates to an aqueous alkaline composition (A) for alkaline passivation of metallic components comprising at least in part surfaces of zinc or zinc alloys, containing iron(III) ions, phosphate ions, and one or more complexing agents, where a free alkalinity ranges from 1 to 6 points, and the pH is at least 11. The aqueous compositions (A) can additionally contain nonionic surfactants, so that such compositions are suitable for use in a method in which both cleaning and alkaline passivation of the metallic component occur in one step. The present invention further relates to a method for alkaline passivation of metallic components by contacting them with composition (A), and further a method for surface treatment in automobile body production, in which the alkaline passivation step using composition (A) is followed by an acid passivation step using a composition (B).
    Type: Application
    Filed: August 3, 2012
    Publication date: August 8, 2013
    Applicant: Henkel AG & Co. KG aA
    Inventors: Jan-Willem BROUWER, Jens KROEMER, William E. FRISTAD, Annette WILLER
  • Publication number: 20120325110
    Abstract: The invention relates to an acidic, aqueous, chromium-free composition (A) for the anti-corrosive treatment of steel and/or galvanized steel surfaces comprising metal ions (M) selected from ions at least of the elements nickel, cobalt, molybdenum, iron or tin and a multi-stage method applying the composition (A) for the anti-corrosive pre-treatment of metal components which have steel and/or galvanized steel surfaces. The invention further relates to metal surfaces of zinc or iron having a passive layer system comprising at least 30 mg/m2 nickel and at least 10 mg/m2 zircon, titanium and/or hafnium and sulfur, wherein nickel is present in metallic form at up to at least 30 At. %, obtainable in a method according to the invention.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 27, 2012
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Frank-Oliver Pilarek, Jens Kroemer, William E. Fristad, Helene Maechel
  • Patent number: 8329013
    Abstract: A process for the anticorrosive treatment of metal components that have been heat-treated at a temperature of at least 100° C. and at least partially comprise zinc surfaces, wherein the surfaces of the component that consist of zinc already partially have a crystalline zinc phosphate layer, wherein the cleaned component is given an activating pretreatment with an acidic aqueous dispersion of insoluble phosphates having a pH of not less than 4 and the component is subsequently subjected to a phosphating conversion treatment before electrocoating is applied. The invention also comprises the use of metal components that have been treated in such a process, for the application of multilayer systems and in particular for the manufacture of bodies in automobile production.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: December 11, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Matthias Hamacher, Frank-Oliver Pilarek, Marc Balzer, Jens Kroemer, Roland Popp
  • Publication number: 20120177946
    Abstract: The invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations thereof, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates of the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Application
    Filed: March 19, 2012
    Publication date: July 12, 2012
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem BROUWER, Jens Krömer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer
  • Publication number: 20110189401
    Abstract: The present invention relates to a method for improving the corrosion-protecting pre-treatment of metal surfaces and using rinse water in a manner to conserve resources in such a corrosion-protecting pre-treatment, comprising a conversion treatment step using an aqueous composition comprising at least 50 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds at a pH value of 3 to 5.5, wherein a minimum fraction of 10 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds is present in the last pre-rinse step and a portion of the aqueous composition of the conversion treatment step is contained in the first post-rinse step. The resource-conserving use of the rinse water is accomplished according to the invention by way of a cascaded return of rinse water from the last rinse step to the first rinse step.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 4, 2011
    Applicant: Henkel AG & Co. KGaA
    Inventors: Franz-Adolf Czika, Sophie Cornen, Jens Kroemer, Michael Frank, Nicole Teubert, Jan-Willem Brouwer
  • Publication number: 20110062027
    Abstract: A process for the anticorrosive treatment of metal components that have been heat-treated at a temperature of at least 100° C. and at least partially comprise zinc surfaces, wherein the surfaces of the component that consist of zinc already partially have a crystalline zinc phosphate layer, wherein the cleaned component is given an activating pretreatment with an acidic aqueous dispersion of insoluble phosphates having a pH of not less than 4 and the component is subsequently subjected to a phosphating conversion treatment before electrocoating is applied. The invention also comprises the use of metal components that have been treated in such a process, for the application of multilayer systems and in particular for the manufacture of bodies in automobile production.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 17, 2011
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Matthias Hamacher, Frank-Oliver Pilarek, Marc Balzer, Jens Kroemer, Roland Popp
  • Publication number: 20110041957
    Abstract: The present invention relates to a chromium-free aqueous agent based on water-soluble compounds of titanium and/or zirconium and a source of fluoride ions, copper ions and metal ions selected from the group consisting of calcium, magnesium, aluminum, boron, zinc, iron, manganese and/or tungstene and to a method for the anti-corrosive conversion treatment of metal surfaces. The chromium-free aqueous agent is suitable for the treatment of various metal materials, joined in composite structures, amongst others of steel or galvanized steel or the alloys thereof or any combinations of said materials. Furthermore, surfaces of aluminum and alloys thereof can be treated in an anti-corrosive manner using the agent according to the invention. The anti-corrosive treatment is intended in particular as a pretreatment for a subsequent dip-coating.
    Type: Application
    Filed: September 17, 2010
    Publication date: February 24, 2011
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Kroemer, Sophie Cornen, Michael Frank, Nicole Teubert, Franz-Adolf Czika
  • Publication number: 20090288738
    Abstract: A method for recovering demineralized water from zirconium-containing rinse water having a pH lower than 6.0, wherein a) the rinse water has added to it an aqueous solution of Ca(OH)2 containing no more than 0.1 wt% undissolved Ca(OH)2, in a quantity such that the pH of the rinse water rises to a value in the range from 6.2 to 8.0, b) a precipitate that forms is separated from the rinse water, and c) the rinse water from which the precipitate was removed in step b) is subjected to an ion exchange method or to reverse osmosis.
    Type: Application
    Filed: August 5, 2009
    Publication date: November 26, 2009
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer
  • Publication number: 20090255608
    Abstract: The present invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations of these materials, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates with regard to the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Application
    Filed: April 22, 2009
    Publication date: October 15, 2009
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Kromer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer