Patents by Inventor Jan Zaleski

Jan Zaleski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220330381
    Abstract: A user equipment (UE) can include processing circuitry coupled to memory. To configure the UE for New Radio (NR) communications above a 52.6 GHz carrier frequency, the processing circuitry is to decode radio resource control (RRC) signaling to obtain a cyclic shift value in time domain. The cyclic shift value is associated with a demodulation reference signal (DM-RS) antenna port (AP) of a plurality of available DM-RS APs. A single carrier based waveform DM-RS sequence corresponding to the DM-RS AP is generated using a base sequence and the cyclic shift value. The single carrier based waveform DM-RS sequence is encoded with uplink data for transmission to a base station using a physical uplink shared channel (PUSCH) using a carrier above the 52.6 GHz carrier frequency.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 13, 2022
    Inventors: Gang Xiong, Yushu Zhang, Dae Won Lee, Alexei Vladimirovich Davydov, Seunghee Han, Jie Zhu, Dmitry Belov, Debdeep Chatterjee, Andrey Chervyakov, Fatemeh Hamidi-Sepehr, Hong He, Toufiqul Islam, Jeongho Jeon, Alexey Vladimirovich Khoryaev, Lopamudra Kundu, Yongjun Kwak, Jose Armando Oviedo, Sergey Panteleev, Mikhail Shilov, Sergey Sosnin, Salvatore Talarico, Jan Zaleski
  • Patent number: 11432369
    Abstract: A user equipment (UE) can include processing circuitry coupled to memory. To configure the UE for New Radio (NR) communications above a 52.6 GHz carrier frequency, the processing circuitry is to decode radio resource control (RRC) signaling to obtain a cyclic shift value in time domain. The cyclic shift value is associated with a demodulation reference signal (DM-RS) antenna port (AP) of a plurality of available DM-RS APs. A single carrier based waveform DM-RS sequence corresponding to the DM-RS AP is generated using a base sequence and the cyclic shift value. The single carrier based waveform DM-RS sequence is encoded with uplink data for transmission to a base station using a physical uplink shared channel (PUSCH) using a carrier above the 52.6 GHz carrier frequency.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 30, 2022
    Assignee: Apple Inc.
    Inventors: Gang Xiong, Yushu Zhang, Dae Won Lee, Alexei Vladimirovich Davydov, Seunghee Han, Jie Zhu, Dmitry Belov, Debdeep Chatterjee, Andrey Chervyakov, Fatemeh Hamidi-Sepehr, Hong He, Toufiqul Islam, Jeongho Jeon, Alexey Vladimirovich Khoryaev, Lopamudra Kundu, Yongjun Kwak, Jose Armando Oviedo, Sergey Panteleev, Mikhail Shilov, Sergey Sosnin, Salvatore Talarico, Jan Zaleski
  • Patent number: 11184204
    Abstract: Embodiments provide a pre-distortion circuit and apparatus, a method and computer program for pre-distorting, a transmitter, a radio transceiver, a communication device, a mobile transceiver, a base station transceiver and a storage. The pre-distortion circuit (10) is configured for a digital quadrature signal. The pre-distortion circuit (10) comprises a first input (12) for an inphase component of the quadrature signal and a second input (14) for a quadrature component of the quadrature signal. The pre-distortion circuit 10 comprises a signal processing circuit (16) configured to determine whether polarities of the inphase component and quadrature component are equal, and to determine pre-distortion coefficients based on the amplitude of the inphase component, the amplitude of the quadrature component, and based on whether the polarities are equal.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: November 23, 2021
    Assignee: Apple Inc.
    Inventors: Christian Mayer, Jan Zaleski, Jovan Markovic
  • Publication number: 20210144036
    Abstract: Embodiments provide a pre-distortion circuit and apparatus, a method and computer program for pre-distorting, a transmitter, a radio transceiver, a communication device, a mobile transceiver, a base station transceiver and a storage. The pre-distortion circuit (10) is configured for a digital quadrature signal. The pre-distortion circuit (10) comprises a first input (12) for an inphase component of the quadrature signal and a second input (14) for a quadrature component of the quadrature signal. The pre-distortion circuit 10 comprises a signal processing circuit (16) configured to determine whether polarities of the inphase component and quadrature component are equal, and to determine pre-distortion coefficients based on the amplitude of the inphase component, the amplitude of the quadrature component, and based on whether the polarities are equal.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 13, 2021
    Inventors: Christian Mayer, Jan Zaleski, Jovan Markovic
  • Patent number: 10454748
    Abstract: An apparatus for generating a radio frequency signal based on a symbol within a constellation diagram is provided. The constellation diagram is spanned by a first axis representing an in-phase component and an orthogonal second axis representing a quadrature component. The apparatus includes a processing unit configured to select one of a plurality of segments of the constellation diagram containing the symbol. The segment is delimited by two radially extending boundaries, wherein the two radially extending boundaries span an opening angle of the segment that is different from 90°. The processing unit is further configured to calculate a first coordinate of the symbol with respect to a third axis, and a second coordinate of the symbol with respect to a fourth axis. At least one of the third axis and the fourth axis coincides with one of the two radially extending boundaries.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: October 22, 2019
    Assignee: Intel IP Corporation
    Inventors: Burkhard Neurauter, Christian Mayer, Jan Zaleski, Jovan Markovic
  • Publication number: 20190306923
    Abstract: A user equipment (UE) can include processing circuitry coupled to memory. To configure the UE for New Radio (NR) communications above a 52.6 GHz carrier frequency, the processing circuitry is to decode radio resource control (RRC) signaling to obtain a cyclic shift value in time domain. The cyclic shift value is associated with a demodulation reference signal (DM-RS) antenna port (AP) of a plurality of available DM-RS APs. A single carrier based waveform DM-RS sequence corresponding to the DM-RS AP is generated using a base sequence and the cyclic shift value. The single carrier based waveform DM-RS sequence is encoded with uplink data for transmission to a base station using a physical uplink shared channel (PUSCH) using a carrier above the 52.6 GHz carrier frequency.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 3, 2019
    Inventors: Gang Xiong, Yushu Zhang, Dae Won Lee, Alexei Vladimirovich Davydov, Seunghee Han, Jie Zhu, Dmitry Belov, Debdeep Chatterjee, Andrey Chervyakov, Fatemeh Hamidi-Sepehr, Hong He, Toufiqul Islam, Jeongho Jeon, Alexey Vladimirovich Khoryaev, Lopamudra Kundu, Yongjun Kwak, Jose Armando Oviedo, Sergey Panteleev, Mikhail Shilov, Sergey Sosnin, Salvatore Talarico, Jan Zaleski
  • Publication number: 20180248740
    Abstract: An apparatus for generating a radio frequency signal based on a symbol within a constellation diagram is provided. The constellation diagram is spanned by a first axis representing an in-phase component and an orthogonal second axis representing a quadrature component. The apparatus includes a processing unit configured to select one of a plurality of segments of the constellation diagram containing the symbol. The segment is delimited by two radially extending boundaries, wherein the two radially extending boundaries span an opening angle of the segment that is different from 90°. The processing unit is further configured to calculate a first coordinate of the symbol with respect to a third axis, and a second coordinate of the symbol with respect to a fourth axis. At least one of the third axis and the fourth axis coincides with one of the two radially extending boundaries.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 30, 2018
    Inventors: Burkhard Neurauter, Christian Mayer, Jan Zaleski, Jovan Markovic
  • Patent number: 9722645
    Abstract: An apparatus for generating a transmit signal includes an up-conversion module and a delay module. The up-conversion module up-converts a first component signal of a multi-phase baseband transmit signal using a first oscillator signal and up-converts a delayed second component signal of the multi-phase baseband transmit signal using a second oscillator signal to generate a radio frequency transmit signal. The first oscillator signal and the second oscillator signal comprise an oscillator signal phase offset so that an edge of the second oscillator signal occurs earlier than a corresponding edge of the first oscillator signal. The delay module delays a second component signal of the multi-phase baseband transmit signal relative to the first component signal of the multi-phase baseband transmit signal by a predefined component signal delay to generate the delayed second component signal of the multi-phase baseband transmit signal.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: August 1, 2017
    Assignee: Intel IP Corporation
    Inventors: Jovan Markovic, Jan Zaleski, Christian Mayer
  • Publication number: 20160182101
    Abstract: An apparatus for generating a transmit signal includes an up-conversion module and a delay module. The up-conversion module up-converts a first component signal of a multi-phase baseband transmit signal using a first oscillator signal and up-converts a delayed second component signal of the multi-phase baseband transmit signal using a second oscillator signal to generate a radio frequency transmit signal. The first oscillator signal and the second oscillator signal comprise an oscillator signal phase offset so that an edge of the second oscillator signal occurs earlier than a corresponding edge of the first oscillator signal. The delay module delays a second component signal of the multi-phase baseband transmit signal relative to the first component signal of the multi-phase baseband transmit signal by a predefined component signal delay to generate the delayed second component signal of the multi-phase baseband transmit signal.
    Type: Application
    Filed: September 18, 2015
    Publication date: June 23, 2016
    Inventors: Jovan Markovic, Jan Zaleski, Christian Mayer
  • Patent number: 9118534
    Abstract: A multicarrier transmitter has a first mode, in which the transmitter is configured to transmit a first component carrier signal modulated onto a first carrier by using a first LO signal, and a second mode, in which the transmitter is configured to transmit the first component carrier signal modulated onto the first carrier and a second component carrier signal modulated onto a second carrier by using a second LO signal. The multicarrier transmitter is coupled to a controllable oscillator and configured to adapt a frequency of an LO signal output by the controllable oscillator dependent on the multicarrier transmitter being activated in the first or second mode to output the first LO signal or the second LO signal. For example, the multicarrier transmitter may be configured to switch between the first mode and the second mode while transmitting the component carrier signals.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: Intel Deutschland GmbH
    Inventors: Christian Mayer, Jan Zaleski, Thomas Mayer
  • Patent number: 9054921
    Abstract: A method and an apparatus provide a plurality of modulated signals by frequency shifting an output signal of a carrier signal generation circuit for obtaining a first carrier signal and a second carrier signal, and by modulating the first and second carrier signals.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 9, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Christian Mayer, Harald Pretl, Patrick Ossmann, Jan Zaleski, Krzysztof Dufrene
  • Patent number: 8867665
    Abstract: A communication system includes a first DAC array, a second DAC array, and a merge component. The first DAC array is configured to receive a first portion of modulation signals and to generate a first RF signal according to a modulation mode. The second DAC array is configured to receive a second portion of the modulation signals and to generate a second RF signal according to the modulation mode. The merge component is configured to receive the first RF signal and the second RF signal. The merge component is also configured to generate an output RF signal according to the first RF signal and the second RF signal, wherein the output RF signal has a modulation format according to the modulation mode.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 21, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Krzysztof Dufrene, Harald Pretl, Patrick Ossmann, Jan Zaleski, Christian Mayer
  • Publication number: 20140269993
    Abstract: A method and an apparatus provide a plurality of modulated signals by frequency shifting an output signal of a carrier signal generation circuit for obtaining a first carrier signal and a second carrier signal, and by modulating the first and second carrier signals.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Christian Mayer, Harald Pretl, Patrick Ossmann, Jan Zaleski, Krzysztof Dufrene
  • Publication number: 20140269855
    Abstract: A multicarrier transmitter has a first mode, in which the transmitter is configured to transmit a first component carrier signal modulated onto a first carrier by using a first LO signal, and a second mode, in which the transmitter is configured to transmit the first component carrier signal modulated onto the first carrier and a second component carrier signal modulated onto a second carrier by using a second LO signal. The multicarrier transmitter is coupled to a controllable oscillator and configured to adapt a frequency of an LO signal output by the controllable oscillator dependent on the multicarrier transmitter being activated in the first or second mode to output the first LO signal or the second LO signal. For example, the multicarrier transmitter may be configured to switch between the first mode and the second mode while transmitting the component carrier signals.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Christian Mayer, Jan Zaleski, Thomas Mayer
  • Publication number: 20140211870
    Abstract: A communication system includes a first DAC array, a second DAC array, and a merge component. The first DAC array is configured to receive a first portion of modulation signals and to generate a first RF signal according to a modulation mode. The second DAC array is configured to receive a second portion of the modulation signals and to generate a second RF signal according to the modulation mode. The merge component is configured to receive the first RF signal and the second RF signal. The merge component is also configured to generate an output RF signal according to the first RF signal and the second RF signal, wherein the output RF signal has a modulation format according to the modulation mode.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Inventors: Krzysztof Dufrene, Harald Pretl, Patrick Ossmann, Jan Zaleski, Christian Mayer