Patents by Inventor Jane Buehler

Jane Buehler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070134468
    Abstract: A process for producing an enhanced friction reducing surface by bonding a dry lubricant to a substrate by way of high velocity mechanical impact and low temperature diffusion bonding, and the friction-reduced surface produced thereby. Kinetic energy produced from the mechanical impact drives the lubricant against the surface of the substrate, forming a metallurgical bond between the lubricant and the substrate surface. Performance of a subsequent low temperature solid state diffusion bonding step at less than half the melting point of the substrate causes, in combination with the stored bond energy, causes the lubricant to penetrate into the sub-surface of the substrate. The resulting substrate, modified at the sub-surface level but without any loss of metallurgical characteristics, demonstrates significantly improved wear and friction-reducing characteristics.
    Type: Application
    Filed: July 13, 2005
    Publication date: June 14, 2007
    Inventor: Jane Buehler
  • Patent number: 6971151
    Abstract: The invention encompasses a method of treating a physical vapor deposition target. The target has a sputtering surface and a sidewall edge at a periphery of the sputtering surface. The method comprises pressing a tool against the sidewall edge to form a distribution of imprints in the sidewall edge of the target. The tool is then removed from the sidewall edge, leaving the imprints extending into the sidewall edge. The invention also encompasses a physical vapor deposition target. The target includes a sputtering surface having an outer periphery, and a sidewall edge along the outer periphery of the sputtering surface. The sidewall edge has a repeating pattern of imprints extending therein.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: December 6, 2005
    Assignee: Honeywell International Inc.
    Inventor: Jane Buehler
  • Patent number: 6797079
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: September 28, 2004
    Assignee: Honeywell International Inc.
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler
  • Patent number: 6758920
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: July 6, 2004
    Assignee: Honeywell International Inc.
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler
  • Patent number: 6503380
    Abstract: The invention encompasses a method of treating a physical vapor deposition target. The target has a sputtering surface and a sidewall edge at a periphery of the sputtering surface. The method comprises pressing a tool against the sidewall edge to form a distribution of imprints in the sidewall edge of the target. The tool is then removed from the sidewall edge, leaving the imprints extending into the sidewall edge. The invention also encompasses a physical vapor deposition target. The target includes a sputtering surface having an outer periphery, and a sidewall edge along the outer periphery of the sputtering surface. The sidewall edge has a repeating pattern of imprints extending therein.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: January 7, 2003
    Assignee: Honeywell International Inc.
    Inventor: Jane Buehler
  • Publication number: 20020079217
    Abstract: The invention encompasses a method of treating a physical vapor deposition target. The target has a sputtering surface and a sidewall edge at a periphery of the sputtering surface. The method comprises pressing a tool against the sidewall edge to form a distribution of imprints in the sidewall edge of the target. The tool is then removed from the sidewall edge, leaving the imprints extending into the sidewall edge. The invention also encompasses a physical vapor deposition target. The target includes a sputtering surface having an outer periphery, and a sidewall edge along the outer periphery of the sputtering surface. The sidewall edge has a repeating pattern of imprints extending therein.
    Type: Application
    Filed: February 19, 2002
    Publication date: June 27, 2002
    Inventor: Jane Buehler
  • Publication number: 20020014289
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Application
    Filed: February 14, 2001
    Publication date: February 7, 2002
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler
  • Publication number: 20010035237
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Application
    Filed: February 14, 2001
    Publication date: November 1, 2001
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler
  • Publication number: 20010035238
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Application
    Filed: February 14, 2001
    Publication date: November 1, 2001
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler