Patents by Inventor Janet M. Goss

Janet M. Goss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210229044
    Abstract: A carbonized PVDC copolymer useful for the separation of an olefin from its corresponding paraffin may be made by heating a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 20 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C. A process for separating an olefin from its corresponding paraffin in a gas mixture is comprised of flowing the gas mixture through the aforementioned carbonized polyvinylidene chloride (PVDC) copolymer to produce a permeate first stream having an increased concentration of the olefin and a second retentate stream having an increased concentration of its corresponding paraffin.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Janet M. Goss, Edward M. Calverley, Douglas E. Beyer
  • Publication number: 20210229045
    Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.
    Type: Application
    Filed: April 15, 2021
    Publication date: July 29, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Douglas E. Beyer, Janet M. Goss, Chan Han, Edward M. Calverley
  • Patent number: 11007489
    Abstract: A carbonized PVDC copolymer useful for the separation of an olefin from its corresponding paraffin may be made by heating a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 20 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C. A process for separating an olefin from its corresponding paraffin in a gas mixture is comprised of flowing the gas mixture through the aforementioned carbonized polyvinylidene chloride (PVDC) copolymer to produce a permeate first stream having an increased concentration of the olefin and a second retentate stream having an increased concentration of its corresponding paraffin.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: May 18, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Janet M. Goss, Edward M. Calverley, Douglas E. Beyer
  • Patent number: 11007488
    Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: May 18, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Douglas E. Beyer, Janet M. Goss, Chan Han, Edward M. Calverley
  • Publication number: 20210138407
    Abstract: A supported carbon molecular sieve (CMS) membrane is made by contacting a film of a carbon forming polymer on a polymer textile to form a laminate. The laminate is then heated to a temperature for a time under an atmosphere sufficient to carbonize the film and polymer textile to form the supported CMS membrane. The supported CMS membrane formed is a laminate having a carbon separating layer graphitically bonded to a carbon textile, wherein the carbon separating layer is a continuous film. The supported CMS membranes are particularly useful for separating gases such as olefins from their corresponding paraffins.
    Type: Application
    Filed: April 12, 2018
    Publication date: May 13, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Janet M. Goss, Stephanie K. Anderson
  • Patent number: 10967562
    Abstract: An additive elastomeric manufactured part having improved surface finish is made by repeatedly extruding through a nozzle to build up layers of a material comprised of a prepolymer comprised of an isocyanate terminated prepolymer and a filler in an amount such that the material has a shear storage modulus G? of 100,000 to 300,000 Pa measured at an oscillation rate of 1 Hz and a relaxation time of 20 seconds to 360 seconds. It has been discovered that the particular material having these rheological properties is able to improve the surface finish of the additive manufactured part without slumping and is believed to be due to surface flow of material into valleys between the extrudates as they are being built up.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: April 6, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Craig F. Gorin, Janet M. Goss, Aleksander J. Pyzik, Sharon Allen, Sanjay C. Solanki, Daniel P. Sophiea
  • Patent number: 10646849
    Abstract: A process to prepare a carbon molecular sieve adsorbent composition comprises steps beginning with an activated carbon having specific effective micropore size. The activated carbon is impregnated with monomers or partially polymerized polymer, allowed to complete polymerization, and then carbonized such that the impregnant shrinks the micropores to another specific effective micropore size. Finally, the impregnated/polymerized/carbonized product is annealed at a temperature ranging from 1000° C. to 1500° C., which ultimately and predictably shrinks the micropores to a size ranging from 4.0 Angstroms to 4.3 Angstroms. The invention surprisingly enables fine tuning of the effective micropore size, as well as desirable selectivity, capacity and adsorption rates, to obtain highly desirable carbon molecular sieving capability particularly suited for use in, for example, fixed beds in pressure swing or temperature swing processes to enable propylene/propane separations.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: May 12, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Chan Han, Janet M. Goss, Edward M. Calverley
  • Publication number: 20190233335
    Abstract: A porous inorganic additive manufactured article that is comprised of at least two layers of inorganic particulates bound together by a carbon binding phase throughout. The additive manufactured article may be formed by additive manufacturing using a mixture comprised of an organic reactive material and inorganic particulates, wherein the organic reactive material is subsequently reacted to form a thermoset material that forms carbon upon heating that binds the inorganic particulates together to form the porous inorganic additive manufactured article. The porous inorganic additive manufactured article may then be infiltrated with a liquid that is solidified to form a composite article or may be further heated in a differing atmosphere to form a further sintered or reacted porous inorganic article.
    Type: Application
    Filed: June 26, 2017
    Publication date: August 1, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Aleksander J Pyzik, Craig F. Gorin, Janet M. Goss, Sharon Allen, Daniel P. Sophiea
  • Publication number: 20190184628
    Abstract: An additive elastomeric manufactured part having improved surface finish is made by repeatedly extruding through a nozzle to build up layers of a material comprised of a prepolymer comprised of an isocyanate terminated prepolymer and a filler in an amount such that the material has a shear storage modulus G? of 100,000 to 300,000 Pa measured at an oscillation rate of 1 Hz and a relaxation time of 20 seconds to 360 seconds. It has been discovered that the particular material having these rheological properties is able to improve the surface finish of the additive manufactured part without slumping and is believed to be due to surface flow of material into valleys between the extrudates as they are being built up.
    Type: Application
    Filed: May 19, 2017
    Publication date: June 20, 2019
    Inventors: Craig F. Gorin, Janet M. Goss, Aleksander J. Pyzik, Sharon Allen, Sanjay C. Solanki, Daniel P. Sophiea
  • Publication number: 20190083939
    Abstract: A carbonized PVDC copolymer useful for the separation of an olefin from its corresponding paraffin may be made by heating a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 20 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C. A process for separating an olefin from its corresponding paraffin in a gas mixture is comprised of flowing the gas mixture through the aforementioned carbonized polyvinylidene chloride (PVDC) copolymer to produce a permeate first stream having an increased concentration of the olefin and a second retentate stream having an increased concentration of its corresponding paraffin.
    Type: Application
    Filed: March 14, 2017
    Publication date: March 21, 2019
    Inventors: Junqiang Liu, Janet M. Goss, Edward M. Calverley, Douglas E. Beyer
  • Publication number: 20190076793
    Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.
    Type: Application
    Filed: March 14, 2017
    Publication date: March 14, 2019
    Inventors: Junqiang Liu, Douglas E. Beyer, Janet M. Goss, Chan Han, Edward M. Calverley
  • Publication number: 20180280927
    Abstract: A process to prepare a carbon molecular sieve adsorbent composition comprises steps beginning with an activated carbon having specific effective micropore size. The activated carbon is impregnated with monomers or partially polymerized polymer, allowed to complete polymerization, and then carbonized such that the impregnant shrinks the micropores to another specific effective micropore size. Finally, the impregnated/polymerized/carbonized product is annealed at a temperature ranging from 1000° C. to 1500° C., which ultimately and predictably shrinks the micropores to a size ranging from 4.0 Angstroms to 4.3 Angstroms. The invention surprisingly enables fine tuning of the effective micropore size, as well as desirable selectivity, capacity and adsorption rates, to obtain highly desirable carbon molecular sieving capability particularly suited for use in, for example, fixed beds in pressure swing or temperature swing processes to enable propylene/propane separations.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 4, 2018
    Applicant: Dow Global Technologies LLC
    Inventors: Junqiang Liu, Chan Han, Janet M. Goss, Edward M. Calverley
  • Patent number: 10081020
    Abstract: A method for manufacturing filtered high aspect ratio silver nanowires is provided, wherein a total glycol concentration is <0.001 wt % at all times.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: September 25, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: George L. Athens, Raymond M. Collins, William R. Bauer, Patrick T. McGough, Janet M. Goss, George J. Frycek, Wei Wang, Jonathan D. Lunn, Robin P. Ziebarth, Richard A. Patyk
  • Patent number: 10081059
    Abstract: A process for manufacturing silver nanowires is provided, wherein the recovered silver nanowires have a high aspect ratio; and, wherein the total glycol concentration is <0.001 wt % at all times during the process.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 25, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Robin P. Ziebarth, Richard A. Patyk, Wei Wang, Patrick T. McGough, George L. Athens, Janet M. Goss, Jonathan D. Lunn
  • Patent number: 9999926
    Abstract: A method for manufacturing high aspect ratio silver nanowires is provided, wherein a total glycol concentration is <0.001 wt % at all times.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: June 19, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Patrick T. McGough, Janet M. Goss, George J. Frycek, George L. Athens, Wei Wang, Jonathan D. Lunn, Robin P. Ziebarth, Richard A. Patyk
  • Patent number: 9776249
    Abstract: A process for manufacturing silver nanowires is provided, wherein the recovered silver nanowires have a high aspect ratio; and, wherein the total glycol concentration is <0.001 wt % at all times during the process.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 3, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Wei Wang, Patrick T. McGough, Janet M. Goss, George L. Athens, Jonathan D. Lunn
  • Publication number: 20160361724
    Abstract: A method for manufacturing filtered high aspect ratio silver nanowires is provided, wherein a total glycol concentration is <0.001 wt % at all times.
    Type: Application
    Filed: May 18, 2016
    Publication date: December 15, 2016
    Inventors: George L. Athens, Raymond M. Collins, William R. Bauer, Patrick T. McGough, Janet M. Goss, George J. Frycek, Wei Wang, Jonathan D. Lunn, Robin P. Ziebarth, Richard A. Patyk
  • Patent number: 9517940
    Abstract: Acicular mullite bodies are made in two-step firing process in which a green body is converted first to a fluorotopaz and then to acicular mullite. The bodies are contained within an enclosed region of the furnace. A flow of process gas is provided through the enclosed region during the fluorotopaz-forming step. The process gas is introduced into the enclosed region through multiple openings on at least one side of the enclosed region, and withdrawn through multiple openings on another side of the enclosed region. During the acicular mullite-forming step, a flow of purge gas is maintained in the exterior portion of the furnace. This purge gas may be removed by flowing it into the enclosed region of the furnace and out of the furnace from the enclosed region without re-entering the exterior portion for the furnace.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 13, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Douglas D. Merrick, Kristina Platkowski, Janet M. Goss
  • Publication number: 20160114393
    Abstract: A method for manufacturing high aspect ratio silver nanowires is provided, wherein a total glycol concentration is <0.001 wt % at all times.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 28, 2016
    Inventors: Patrick T. McGough, Janet M. Goss, George J. Frycek, George L. Athens, Wei Wang, Jonathan D. Lunn, Robin P. Ziebarth, Richard A. Patyk
  • Publication number: 20160114396
    Abstract: A process for manufacturing silver nanowires is provided, wherein the recovered silver nanowires have a high aspect ratio; and, wherein the total glycol concentration is <0.001 wt % at all times during the process.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 28, 2016
    Inventors: Wei Wang, Patrick T. McGough, Janet M. Goss, George L. Athens, Jonathan D. Lunn