Patents by Inventor Jang Joo Kim

Jang Joo Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8692237
    Abstract: An organic light emitting device enables improvement on the loss of optical extraction efficiency due to total reflection and optical waveguide effects. The organic light emitting device has a structure wherein a first electrode, an organic substance layer, and a second electrode are sequentially laminated on a substrate, a random nano structure having a fine pattern of a peaks-and-valleys shape is formed between a substrate and a first electrode to extract any light that is wasted due to total reflection and an optical waveguide mode to the outside of the substrate so that an organic light emitting device with improved external quantum efficiency can be realized, and optical extraction patterns and color changes due to visual field angles can also be improved.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: April 8, 2014
    Assignee: SNU R&DB Foundation
    Inventors: Jang-Joo Kim, Hyong-Jun Kim, Hwan-Hee Cho
  • Patent number: 8247962
    Abstract: An organic light emitting device having a photonic crystal structure and a manufacturing method thereof are provided. The organic light emitting device comprises: a substrate through which light passes; a photonic crystal layer formed on the substrate and having a photonic crystal structure; an intermediate layer formed on the photonic crystal layer and having a large refractive index compared with the photonic crystal layer; a first electrode layer formed on the intermediate layer; a light emitting layer formed on the first electrode layer and emitting light according to current flow; and a second electrode layer formed on the light emitting layer.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: August 21, 2012
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Jong-Youp Shim, Jun-Ho Jeong, Ki-Don Kim, Dae-Geun Choi, Jun-Hyuk Choi, Eung-Sug Lee, So-Hee Jeon, Jae-R Youn, Jang-Joo Kim
  • Publication number: 20120100773
    Abstract: An organic light emitting device having a photonic crystal structure and a manufacturing method thereof are provided. The organic light emitting device comprises: a substrate through which light passes; a photonic crystal layer formed on the substrate and having a photonic crystal structure; an intermediate layer formed on the photonic crystal layer and having a large refractive index compared with the photonic crystal layer; a first electrode layer formed on the intermediate layer; a light emitting layer formed on the first electrode layer and emitting light according to current flow; and a second electrode layer formed on the light emitting layer.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Applicant: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Jong-Youp SHIM, Jun-Ho Jeong, Ki-Don Kim, Dae-Geun Choi, Jun-Hyuk Choi, Eung-Sug Lee, So-Hee Jeon, Jae-R. Youn, Jang-Joo Kim
  • Publication number: 20110266577
    Abstract: An organic light emitting device enables improvement on the loss of optical extraction efficiency due to total reflection and optical waveguide effects. The organic light emitting device has a structure wherein a first electrode, an organic substance layer, and a second electrode are sequentially laminated on a substrate, a random nano structure having a fine pattern of a peaks-and-valleys shape is formed between a substrate and a first electrode to extract any light that is wasted due to total reflection and an optical waveguide mode to the outside of the substrate so that an organic light emitting device with improved external quantum efficiency can be realized, and optical extraction patterns and color changes due to visual field angles can also be improved.
    Type: Application
    Filed: December 29, 2009
    Publication date: November 3, 2011
    Applicant: SNU R&DB FOUNDATION
    Inventors: Jang-Joo Kim, Hyong-Jun Kim, Hwan-Hee Cho
  • Publication number: 20090128022
    Abstract: An organic light emitting device having a photonic crystal structure and a manufacturing method thereof are provided. The organic light emitting device comprises: a substrate through which light passes; a photonic crystal layer formed on the substrate and having a photonic crystal structure; an intermediate layer formed on the photonic crystal layer and having a large refractive index compared with the photonic crystal layer; a first electrode layer formed on the intermediate layer; a light emitting layer formed on the first electrode layer and emitting light according to current flow; and a second electrode layer formed on the light emitting layer.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 21, 2009
    Applicant: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Jong-Youp SHIM, Jun-Ho Jeong, Ki-Don Kim, Dae-Geun Choi, Jun-Hyuk Choi, Eung-Sug Lee, So-Hee Jeon, Jae-R Youn, Jang-Joo Kim
  • Patent number: 6512076
    Abstract: Disclosed are polyarylene ether sulfides and polyarylene ether sulfones for optical device and a method for preparing the same. Polyarylene ether sulfides containing fluorine and polyarylene ether sulfones containing fluorine are synthesized through polycondensation of pentafluorophenyl sulfide and pentafluorophenyl sulfone monomer with dihydroxy monomer. In addition, by attaching ethynyl phenol and phenylethynylphenol to terminals of the high molecular weight polymer, solvent resistance of the polymer is increased. Thus, the high molecular weight polymers prepared by very simplified process have low light loss, excellent resistance for heat, solvent and water, and so can be used to manufacture inactive optical waveguide devices.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: January 28, 2003
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Jae Suk Lee, Jang Joo Kim, Jae Pil Kim, Jae Wook Kang, Won Young Lee
  • Publication number: 20020115815
    Abstract: Disclosed are polyarylene ether sulfides and polyarylene ether sulfones for optical device and a method for preparing the same. Polyarylene ether sulfides containing fluorine and polyarylene ether sulfones containing fluorine are synthesized through polycondensation of pentafluorophenyl sulfide and pentafluorophenyl sulfone monomer with dihydroxy monomer. In addition, by attaching ethynyl phenol and phenylethynylphenol to terminals of the high molecular weight polymer, solvent resistance of the polymer is increased. Thus, the high molecular weight polymers prepared by very simplified process have low light loss, excellent resistance for heat, solvent and water, and so can be used to manufacture inactive optical waveguide devices.
    Type: Application
    Filed: August 24, 2001
    Publication date: August 22, 2002
    Inventors: Jae Suk Lee, Jang Joo Kim, Jae Pil Kim, Jae Wook Kang, Won Young Lee
  • Patent number: 5966476
    Abstract: A spatial switch of a simple structure using a "M.times.N" optical beam steering device which operates with M "1.times.N" spatial switches using a phased optical waveguide array. The spatial switch using an optical beam steering device in accordance with the present invention is characterized in that the optical beam steering device includes an optical waveguide phase modulator array, the optical beam steering device is used as a "1.times.N" spatial switch device, and M units of the "1.times.N" spatial switch device are aligned in parallel so that a "M.times.N" spatial switching operation is performed on a plane where a far field diffraction pattern of the "1.times.N" spatial switch device is formed. The spatial switch utilizes the characteristics that if the propagation directions of the lights output from "1.times.N" switches coincide with each other, the far field diffraction patterns formed by the switches converge into the same point.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: October 12, 1999
    Assignee: Electonics and Telecommunications Research Institute
    Inventors: Wol Yon Hwang, Min Cheol Oh, Jang Joo Kim
  • Patent number: 5949089
    Abstract: An organic light emitting diode having a lower electrode formed on a glass substrate, and an emissive layer and an upper electrode formed atop each other on the lower electrode. A thin insulating layer is disposed between the emissive layer and the lower or upper electrode. The thin insulating layer has a thickness within a range where tunneling occurs. The thin insulating layer is inserted between the emissive layer and electrode, so as to balance the injection of electrons a holes into the emissive layer.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: September 7, 1999
    Assignee: Electronics And Telecommunications Research Institute
    Inventors: Jang-Joo Kim, Heuk Park
  • Patent number: 5835644
    Abstract: An optical waveguide polarizer having a transverse electric wave pass mode. The waveguide polarizer includes an upper cladding layer, a core layer, and a lower cladding layer arranged in a vertically stacked relationship. The core layer includes an electro-optic polymer. The waveguide polarizer has a plurality of electrodes disposed on the upper and lower cladding layers and along both sides of a longitudinal region in the core layer such that the plurality of electrodes form electric fields in a direction substantially perpendicular to the core layer and along both sides of the longitudinal region so that a transverse electric wave mode is guided through the longitudinal region and a transverse magnetic wave mode is substantially extinguished in the longitudinal region.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: November 10, 1998
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Min-Cheol Oh, Wol-Yon Hwang, Jang-Joo Kim
  • Patent number: 5792561
    Abstract: A color display device using an electroluminescent polymer includes: a transparent substrate; a transparent electrode formed on the transparent substrate, the electrode being buried by a luminescent polymer; a photo-bleached region (non-luminous region) of a first luminescent polymer formed on the transparent electrode; a non-photo-bleached region (luminous region) of a first luminescent polymer formed between a portion of the transparent electrode and a first metal electrode; a photo-bleached region (non-luminous region) of a second luminescent polymer formed on the photo-bleached region of the first luminescent polymer; a non-photo-bleached region (luminous region) of a second luminescent polymer formed between a portion of the photo-bleached region of the first luminescent polymer and a second metal electrode; a first metal electrode formed on the non-photo-bleached region of the first luminescent polymer; a photo-bleached region (non-luminous region) of a third luminescent polymer formed on the photo-blea
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: August 11, 1998
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Wol-Yon Whang, Jang-Joo Kim
  • Patent number: 5778112
    Abstract: An improved waveguide polymer electro-optic modulator/switch which is operated in a single mode and has an improved device characteristic compared to the optimized modulator/switch and is capable of enhancing a coupling efficiency with an optical fiber without an increase of the driving voltage, which includes a waveguide formed in one line, a signal electrode formed at an upped input side of the waveguide, to which signal electrode a signal voltage is applied as an upper electrode, and an absorption electrode formed at an upper portion of the waveguide for absorbing a higher order which are not easily absorbed by the signal electrode and for increasing a dissipation ratio.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: July 7, 1998
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Wol-Yon Hwang, Jang-Joo Kim
  • Patent number: 5763289
    Abstract: A method for fabricating multi-layer polymer thin film of an electro-optical device which has a qualified multi-layer by using photobleaching characteristics of polymer. A proper time of photobleaching only changes the chemical, mechanical and electrical characteristics of the surface of the thin film without having any influence on characteristics of the device, so that when the multi-layer thin film are formed, such a cracking due to a solvent or melting, cracking due to the difference of mechanical tensile strength between each layer can be prevented, thereby obtaining a clean multi-layer thin film.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: June 9, 1998
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jang-Joo Kim, Wol-Yon Hwang, Tae-Hyoung Zyung
  • Patent number: 5692075
    Abstract: The invention is related to an improved mach-zehnder type electro-optic polymer modulator which is capable of controlling its initial output state by post-photobleaching method, thus achieving a more stable output characteristic of a device without use of a bias electrode, which includes first and second electrodes formed on an upper portion of first and second arms have different lengths wherein a mach-zehnder type electro-optic polymer modulator.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: November 25, 1997
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Wol-Yon Hwang, Jang-Joo Kim
  • Patent number: 5604398
    Abstract: Disclosed is an electroluminescence light-emitting device for generating an optical wavelength, comprises a substrate; an ITO layer coated on the substrate, at lest two light-emitting layers sequentially formed on the ITO layer and having a different band gap, and a metal electrode formed on an upper light-emitting layer of the at least two light-emitting layers, wherein the ITO layer is used as an anode and the metal electrode is used as a cathode.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: February 18, 1997
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Tae-Hyoung Zyung, Jang-Joo Kim, Wol-Yon Hwang
  • Patent number: 5555326
    Abstract: An optical waveguide intensity modulator of a polymer waveguide utilizes and electro-optic effect and optical birefringence induced from a poling process of a nonlinear polymer thin-film. The optical waveguide intensity modulator is constructed by a series combination of a TE/TM mode selector, a TE or TM mode converter and another TE or TM mode selector. In the polymer waveguide, the mode selectors and mode converter can be easily obtained by making the direction of a poling field to be horizontal (or vertical) and approximately 45.degree. direction. According to the present invention, the optical waveguide intensity modulator is formed by integrating the TE or TM mode selectors and the TE or TM mode converter onto a single substrate. Further, because no element, is required which results in optical loses for example an optical isolator, an optical coupler or a curved portion of the waveguide, the efficiency of the device can be improved.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: September 10, 1996
    Assignee: Electronics & Telecommunications Research Inst.
    Inventors: Wol-Yon Hwang, Jang-Joo Kim, Tae-Hyoung Zyung, Min-Chul Oh
  • Patent number: 5513283
    Abstract: A TE-TM mode converter of a polymer electro-optic polarization waveguide type uses the electro-optic birefringence and the electro-optic effect as a non-linear optical waveguide medium, in which an optical director formed during the poling of a polymer thin film is determined by the direction of the poling electrical field. The poling electrode design enables the optical director having the angle of 45.degree. to the electrical direction of the TE and TM modes to be formed in the polymer thin film. When the waveguide receives the incident light of the TE mode or TM mode, the TE (or TM) mode is switched into the TM (or TE) mode by an effective refraction factor between the optical director and the director perpendicular thereto. If a length of the poling electrode and the birefringence of the waveguide is adjusted, the changes of various electo-optic polarization states are possible. The poled thin film has an electro-optic effect.
    Type: Grant
    Filed: December 8, 1994
    Date of Patent: April 30, 1996
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Wol-Yon Whang, Jang-Joo Kim, Tae-Hyoung Zyung, Min-Chul Oh