Patents by Inventor Jang-Sun Kim
Jang-Sun Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240341131Abstract: A display device includes a substrate, first and second transistors on the substrate, a first electrode connected to one of the first and second transistors, a second electrode facing the first electrode, and a light emission member between the first and second electrodes, where the first transistor includes a first channel including a polycrystalline semiconductor member on the substrate, a first source electrode and a first drain electrode at respective opposite sides of the first channel, a first gate electrode overlapping the first channel, and a first insulating layer covering the first gate electrode, the second transistor includes a second gate electrode on the first insulating layer, a second channel including an oxide semiconductor member on the second gate electrode, second source and drain electrodes on the second channel, and an external light blocking member on the second source and drain electrodes and overlapping the second channel.Type: ApplicationFiled: June 17, 2024Publication date: October 10, 2024Inventors: Ji-Sun KIM, Jang Mi KANG, Sun Hwa LEE, Mu Kyung JEON
-
Patent number: 12041824Abstract: A display device includes a substrate, first and second transistors on the substrate, a first electrode connected to one of the first and second transistors, a second electrode facing the first electrode, and a light emission member between the first and second electrodes, where the first transistor includes a first channel including a polycrystalline semiconductor member on the substrate, a first source electrode and a first drain electrode at respective opposite sides of the first channel, a first gate electrode overlapping the first channel, and a first insulating layer covering the first gate electrode, the second transistor includes a second gate electrode on the first insulating layer, a second channel including an oxide semiconductor member on the second gate electrode, second source and drain electrodes on the second channel, and an external light blocking member on the second source and drain electrodes and overlapping the second channel.Type: GrantFiled: September 20, 2021Date of Patent: July 16, 2024Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Ji-Sun Kim, Jang Mi Kang, Sun Hwa Lee, Mu Kyung Jeon
-
Patent number: 10908506Abstract: A method of manufacturing a semiconductor device includes: providing a first photoresist pattern on a wafer; measuring an overlay of the first photoresist pattern; generating a first overlay model function by a first overlay regression analysis of the measured overlay; and generating a second overlay model function by a second overlay regression analysis of a difference between the measured overlay and the first overlay model function.Type: GrantFiled: September 3, 2019Date of Patent: February 2, 2021Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventor: Jang-sun Kim
-
Publication number: 20200233312Abstract: A method of manufacturing a semiconductor device includes: providing a first photoresist pattern on a wafer; measuring an overlay of the first photoresist pattern; generating a first overlay model function by a first overlay regression analysis of the measured overlay; and generating a second overlay model function by a second overlay regression analysis of a difference between the measured overlay and the first overlay model function.Type: ApplicationFiled: September 3, 2019Publication date: July 23, 2020Inventor: Jang-sun Kim
-
Patent number: 9958500Abstract: A vacuum socket includes a lower housing including a concave portion with a first hole, the concave portion having a recessed cross section and a printed circuit board in the concave portion, wherein the printed circuit board includes a second hole coupled to the first hole and pads provided along an edge region thereof, a cover provided in the concave portion to cover the printed circuit board, and a vacuum pad inserted in the first hole, the vacuum pad having a third hole coupled to the second hole, wherein the printed circuit board is electrically connected to a first semiconductor chip loaded between the printed circuit board and the cover, via the pads.Type: GrantFiled: June 20, 2016Date of Patent: May 1, 2018Assignee: Samsung Electronics Co., Ltd.Inventors: Jang-Sun Kim, Il Jin, Seungchul Lee
-
Publication number: 20170010324Abstract: A vacuum socket includes a lower housing including a concave portion with a first hole, the concave portion having a recessed cross section and a printed circuit board in the concave portion, wherein the printed circuit board includes a second hole coupled to the first hole and pads provided along an edge region thereof, a cover provided in the concave portion to cover the printed circuit board, and a vacuum pad inserted in the first hole, the vacuum pad having a third hole coupled to the second hole, wherein the printed circuit board is electrically connected to a first semiconductor chip loaded between the printed circuit board and the cover, via the pads.Type: ApplicationFiled: June 20, 2016Publication date: January 12, 2017Inventors: Jang-Sun Kim, Il Jin, Seungchul Lee
-
Patent number: 8981804Abstract: A contact apparatus includes a pusher having first and second surfaces, the first surface being connected to a pressure unit, stoppers protruding from edges of the second surface of the pusher away from the pressure unit, a pusher block having first and second surfaces facing each other, the first surface facing the pusher, and the second surface being connected to a semiconductor device, coupling members connecting the pusher to the pusher block, and a connector disposed between the pusher and the pusher block, at least part of a surface of the connector being circular, and the circular surface making a point contact with the pusher or the pusher block.Type: GrantFiled: June 22, 2012Date of Patent: March 17, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Hun-Kyo Seo, Soon-Geol Hwang, Jang-Sun Kim
-
Publication number: 20130088250Abstract: A contact apparatus includes a pusher having first and second surfaces, the first surface being connected to a pressure unit, stoppers protruding from edges of the second surface of the pusher away from the pressure unit, a pusher block having first and second surfaces facing each other, the first surface facing the pusher, and the second surface being connected to a semiconductor device, coupling members connecting the pusher to the pusher block, and a connector disposed between the pusher and the pusher block, at least part of a surface of the connector being circular, and the circular surface making a point contact with the pusher or the pusher block.Type: ApplicationFiled: June 22, 2012Publication date: April 11, 2013Inventors: Hun-Kyo SEO, Soon-Geol Hwang, Jang-Sun Kim
-
Publication number: 20130029434Abstract: A method of fabricating a semiconductor device includes performing a first period of operation and a second period of operation at first equipment and second equipment. The first period of operation includes performing a first patterning process at each of the first equipment and the second equipment, generating first inspection data of the first equipment and first inspection data of the second equipment, generating first differential data of the second equipment including differentials of the first inspection data of the first equipment and the first inspection data of the second equipment, and calibrating a configuration of the second equipment with reference to the first differential data of the second equipment.Type: ApplicationFiled: July 23, 2012Publication date: January 31, 2013Applicant: Samsung Electronics Co., Ltd.Inventor: Jang-Sun KIM
-
Patent number: 7426229Abstract: A line narrowing module includes an elliptical mirror, a diffraction grating disposed at a first focus of the mirror for separating an incident beam into different lines, and a laser beam dispersion and extraction unit. The laser beam dispersion and extraction unit disperses incident laser over the diffraction grating and selectively extract from the resulting lines a laser beam having a desired narrowed bandwidth. A light source that employs the line narrowing module also includes a laser oscillator for generating the beam, and a light returning unit that returns one fraction of the beam extracted from the laser oscillator back to the laser oscillator. Another fraction of the beam is extracted from the laser oscillator through a front window of the laser oscillator, and undergoes line narrowing in the module. The laser beam having the narrowed bandwidth is immediately output as the exposure light from the module.Type: GrantFiled: June 2, 2006Date of Patent: September 16, 2008Assignee: Samsung Electronics Co., Ltd.Inventor: Jang-Sun Kim
-
Patent number: 7315349Abstract: Exposure equipment useful in the manufacture of semiconductor devices and a related method of operation are disclosed. The exposure equipment directs light through a reticle and an optical system positioned above a wafer onto a target portion of the wafer, and the wafer is rapidly transferred under the directed light to irradiate substantially the entire surface of the wafer. Recursive compensation for undesired movement of the reticle and optical system caused by the rapid transfer of the wafer is provided.Type: GrantFiled: July 29, 2005Date of Patent: January 1, 2008Assignee: Samsung Electronics Co., Ltd.Inventor: Jang-Sun Kim
-
Publication number: 20070171952Abstract: An excimer laser and a line-narrowing module capable of increasing and maximizing production yield in semiconductor manufacturing are disclosed. The line-narrowing module utilizes a beam expander that passes laser light, produced by and incident from a generator of the excimer laser and collimates the laser light in one direction. A diffraction grating receives the collimated laser light and diffracts the laser light and causes a traveling direction of the laser light to be separated according to an associated wavelength of the laser light. A multi-wavelength reflector located at a reflecting position on one side between the diffraction grating and the beam expander in order to re-enter the laser light having a multi-wavelength into the generator through the beam expander. The multi-wavelength reflector reflects the laser light consisting of a plurality of wavelengths among the laser light whose traveling direction is separated from the diffraction grating onto the beam expander.Type: ApplicationFiled: October 3, 2006Publication date: July 26, 2007Inventor: Jang-Sun Kim
-
Publication number: 20070036183Abstract: A line narrowing module includes an elliptical mirror having first and second foci and having an opening adjacent to the second focus, a diffraction grating disposed at the first focus so as to separate an incident beam into different lines, and a laser beam dispersion and extraction unit. The laser beam dispersion and extraction unit is situated in the module and composed to disperse a laser beam, incident thereon from a region containing the second focus of the elliptical mirror, over the diffraction grating and selectively extract from the resulting lines a laser beam having a desired narrowed bandwidth. Most of the remainder of the light is reflected by the elliptical mirror to the region having the second focus. A light source that employs the line narrowing module also includes a laser oscillator for generating the beam whose bandwidth is narrowed by the module, and light returning unit that returns one fraction of the beam extracted fron the laser oscillator back to the laser oscillator.Type: ApplicationFiled: June 2, 2006Publication date: February 15, 2007Inventor: Jang-Sun Kim
-
Publication number: 20060061742Abstract: Exposure equipment useful in the manufacture of semiconductor devices and a related method of operation are disclosed. The exposure equipment directs light through a reticle and an optical system positioned above a wafer onto a target portion of the wafer, and the wafer is rapidly transferred under the directed light to irradiate substantially the entire surface of the wafer. Recursive compensation for undesired movement of the reticle and optical system caused by the rapid transfer of the wafer is provided.Type: ApplicationFiled: July 29, 2005Publication date: March 23, 2006Inventor: Jang-Sun Kim