Patents by Inventor Jani Hamalainen

Jani Hamalainen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11821084
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: November 21, 2023
    Assignee: ASM IP Holding, B.V.
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Publication number: 20230250534
    Abstract: Vapor deposition methods for depositing transition metal dichalcogenide (TMDC) films, such as rhenium sulfide thin films, are provided. In some embodiments TMDC thin films are deposited using a deposition cycle in which a substrate in a reaction space is alternately and sequentially contacted with a vapor phase transition metal precursor, such as a transition metal halide, a reactant comprising a reducing agent, such as NH3 and a chalcogenide precursor. In some embodiments rhenium sulfide thin films are deposited using a vapor phase rhenium halide precursor, a reducing agent and a sulfur precursor. The deposited TMDC films can be etched by chemical vapor etching using an oxidant such as O2 as the etching reactant and an inert gas such as N2 to remove excess etching reactant. The TMDC thin films may find use, for example, as 2D materials.
    Type: Application
    Filed: March 30, 2023
    Publication date: August 10, 2023
    Inventors: Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Patent number: 11643728
    Abstract: Vapor deposition methods for depositing transition metal dichalcogenide (TMDC) films, such as rhenium sulfide thin films, are provided. In some embodiments TMDC thin films are deposited using a deposition cycle in which a substrate in a reaction space is alternately and sequentially contacted with a vapor phase transition metal precursor, such as a transition metal halide, a reactant comprising a reducing agent, such as NH3 and a chalcogenide precursor. In some embodiments rhenium sulfide thin films are deposited using a vapor phase rhenium halide precursor, a reducing agent and a sulfur precursor. The deposited TMDC films can be etched by chemical vapor etching using an oxidant such as O2 as the etching reactant and an inert gas such as N2 to remove excess etching reactant. The TMDC thin films may find use, for example, as 2D materials.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: May 9, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Publication number: 20220002868
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Application
    Filed: September 23, 2021
    Publication date: January 6, 2022
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Publication number: 20210388503
    Abstract: Vapor deposition methods for depositing transition metal dichalcogenide (TMDC) films, such as rhenium sulfide thin films, are provided. In some embodiments TMDC thin films are deposited using a deposition cycle in which a substrate in a reaction space is alternately and sequentially contacted with a vapor phase transition metal precursor, such as a transition metal halide, a reactant comprising a reducing agent, such as NH3 and a chalcogenide precursor. In some embodiments rhenium sulfide thin films are deposited using a vapor phase rhenium halide precursor, a reducing agent and a sulfur precursor. The deposited TMDC films can be etched by chemical vapor etching using an oxidant such as O2 as the etching reactant and an inert gas such as N2 to remove excess etching reactant. The TMDC thin films may find use, for example, as 2D materials.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 16, 2021
    Inventors: Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Patent number: 11155917
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 26, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Publication number: 20200340114
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 29, 2020
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Patent number: 10619242
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 14, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Publication number: 20180155832
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 7, 2018
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Patent number: 9909211
    Abstract: A vapor deposition process for forming a thin film on a substrate in a reaction chamber where the process includes contacting the substrate with a fluoride precursor. The process results in the formation of a lithium fluoride thin film.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 6, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Miia Mäntymäki, Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Patent number: 9765431
    Abstract: The present application relates to atomic layer deposition (ALD) processes for producing metal phosphates such as titanium phosphate, aluminum phosphate and lithium phosphate, as well as to ALD processes for depositing lithium silicates.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: September 19, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jani Hamalainen, Jani Holopainen, Timo Hatanpaa, Mikko Ritala, Markku Leskela
  • Publication number: 20160369397
    Abstract: A vapor deposition process for forming a thin film on a substrate in a reaction chamber where the process includes contacting the substrate with a fluoride precursor. The process results in the formation of a lithium fluoride thin film.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 22, 2016
    Inventors: Miia Mäntymäki, Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Publication number: 20160265110
    Abstract: The present application relates to atomic layer deposition (ALD) processes for producing metal phosphates such as titanium phosphate, aluminum phosphate and lithium phosphate, as well as to ALD processes for depositing lithium silicates.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 15, 2016
    Inventors: Jani Hamalainen, Jani Holopainen, Timo Hatanpaa, Mikko Ritala, Markku Leskela
  • Patent number: 9382615
    Abstract: A vapor deposition process for forming a thin film on a substrate in a reaction chamber where the process includes contacting the substrate with a fluoride precursor. The process results in the formation of a lithium fluoride thin film.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 5, 2016
    Assignee: ASM IP HOLDING B.V.
    Inventors: Miia Mäntymäki, Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Patent number: 9315894
    Abstract: The present application relates to atomic layer deposition (ALD) processes for producing metal phosphates such as titanium phosphate, aluminum phosphate and lithium phosphate, as well as to ALD processes for depositing lithium silicates.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: April 19, 2016
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jani Hamalainen, Jani Holopainen, Timo Hatanpaa, Mikko Ritala, Markku Leskela
  • Publication number: 20140106070
    Abstract: A vapor deposition process for forming a thin film on a substrate in a reaction chamber where the process includes contacting the substrate with a fluoride precursor. The process results in the formation of a lithium fluoride thin film.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 17, 2014
    Applicant: ASM IP HOLDING B.V.
    Inventors: Miia Mäntymäki, Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Publication number: 20120276305
    Abstract: The present application relates to atomic layer deposition (ALD) processes for producing metal phosphates such as titanium phosphate, aluminum phosphate and lithium phosphate, as well as to ALD processes for depositing lithium silicates.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 1, 2012
    Inventors: Jani Hamalainen, Jani Holopainen, Timo Hatanpaa, Mikko Ritala, Markku Leskela
  • Publication number: 20110020546
    Abstract: Noble metal films can be deposited by atomic layer deposition (ALD)-type processes. In preferred embodiments, Ir, Pd, and Pt are deposited by alternately and sequentially contacting a substrate with vapor phase pulses of a noble metal precursor, an oxygen source, and a hydrogen source. The oxygen source is preferably a reactive oxygen species. Preferably the deposition temperature is less than about 200° C. Preferably, pulses of the hydrogen source are less than 10 seconds.
    Type: Application
    Filed: May 12, 2010
    Publication date: January 27, 2011
    Applicant: ASM INTERNATIONAL N.V.
    Inventors: Jani Hämäläinen, Mikko Ritala, Markku Leskelä
  • Patent number: 7660444
    Abstract: A user recognition system that utilizes two CCD cameras to obtain two images of the user from two different angles of view. A three-dimensional model of the user's face is created from the obtained images in addition. The generated model and an additional facial texture image of the user are compared with a stored user profile. When the obtained 3D model and facial texture information matches the stored profile of the user, access is granted to the system.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 9, 2010
    Assignee: Nokia Corporation
    Inventor: Jani Hämäläinen
  • Publication number: 20070014919
    Abstract: Electrically conductive noble metal oxide films can be deposited by atomic layer deposition (ALD)-type processes. In preferred embodiments, Re, Ru, Os and Ir oxides are deposited by alternately and sequentially contacting a substrate with vapor phase pulses of a noble metal precursor and an oxygen source. The noble metal precursor is preferably a betadiketonate compound and the oxygen source is preferably ozone or oxygen plasma. The deposition temperature may be less than about 200° C.
    Type: Application
    Filed: July 15, 2005
    Publication date: January 18, 2007
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela