Patents by Inventor Janine Mok

Janine Mok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9981273
    Abstract: The procedure of dielectric electrophoresis (dielectrophoresis or DEP) utilizes field-polarized particles that move under the application of positive (attractive) and/or negative (repulsive) applied forces. This invention uses negative dielectric electrophoresis (negative dielectrophoresis or nDEP) within a microchannel separation apparatus to make particles move (detached) or remain stationary (attached). In an embodiment of the present invention, the nDEP force generated was strong enough to detach Ag-Ab (antigen-antibody) bonds, which are in the order of 400 pN (piconewtons) while maintaining the integrity of the system components.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 29, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mehdi Javanmard, Sam Emaminejad, Janine Mok, Michael N. Mindrinos
  • Publication number: 20180016630
    Abstract: Improved methods and compositions are provided herein for primer extension target enrichment of target polynucleotides.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Brian C. GODWIN, Joseph PLATZER, Janine MOK, Jo-Anne PENKLER, Bronwen MILLER
  • Publication number: 20160146804
    Abstract: Disclosed are specific binding molecules (e.g. antibodies) that are provided in a set of conjugates, where each conjugate comprises an antibody linked to an oligonucleotide (oligo), such as a DNA oligonucleotide. The antibodies in each set are to the same target antigen. One antibody is preferably immobilized so that it remains in the sample reaction after a wash step. One antibody is used for detection since it will remain in the sample after washing only if there is a specific antibody-target antigen. The oligos in a given set hybridize to each other when both antibodies bind to a target with immuno-specificity. However, if the binding is not immune specific, such as in the case of cross-reactivity, the oligos do not hybridize.
    Type: Application
    Filed: June 26, 2014
    Publication date: May 26, 2016
    Inventors: Ronald W. DAVIS, Nicholas HURLBURT, Jacob M. ZAHN, Mehdi JAVANMARD, Janine A. MOK
  • Publication number: 20140102901
    Abstract: The procedure of dielectric electrophoresis (dielectrophoresis or DEP) utilizes field-polarized particles that move under the application of positive (attractive) and/or negative (repulsive) applied forces. This invention uses negative dielectric electrophoresis (negative dielectrophoresis or nDEP) within a microchannel separation apparatus to make particles move (detached) or remain stationary (attached). In an embodiment of the present invention, the nDEP force generated was strong enough to detach Ag-Ab (antigen-antibody) bonds, which are in the order of 400 pN (piconewtons) while maintaining the integrity of the system components.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 17, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Mehdi Javanmard, Sam Emaminejad, Janine Mok, Michael N. Mindrinos
  • Patent number: 8614056
    Abstract: Embodiments of the invention are related to microfluidic devices for detecting or determining the concentration of biomolecules in an analyte comprising: a channel, wherein a surface of said channel is fabricated to be functionalized with at least one molecule selected to interact with a biomolecule, said channel being configured to interact with a microsphere, wherein a surface of said microsphere is fabricated to be functionalized with at least one same or different molecule selected to interact with said biomolecule; a second channel in fluid communication with said first channel; a system to move fluid containing said microsphere through said first and second channels; and a system to measure a change in electrical impedance or optical microscopy across said second channel as said microsphere moves through said second channel. Other embodiments concern related devices, and methods of making and using.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 24, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Mehdi Javanmard, Michael N. Mindrinos, Janine A. Mok
  • Publication number: 20110312518
    Abstract: Embodiments of the invention are related to microfluidic devices for detecting or determining the concentration of biomolecules in an analyte comprising: a channel, wherein a surface of said channel is fabricated to be functionalized with at least one molecule selected to interact with a biomolecule, said channel being configured to interact with a microsphere, wherein a surface of said microsphere is fabricated to be functionalized with at least one same or different molecule selected to interact with said biomolecule; a second channel in fluid communication with said first channel; a system to move fluid containing said microsphere through said first and second channels; and a system to measure a change in electrical impedance or optical microscopy across said second channel as said microsphere moves through said second channel. Other embodiments concern related devices, and methods of making and using.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 22, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Mehdi Javanmard, Michael N. Mindrinos, Janine A. Mok