Patents by Inventor Janna RATHERT

Janna RATHERT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250146156
    Abstract: An electrochemical reactor, including: a first magnetic field source; a second magnetic field source; and an electrochemical cell between the first magnetic field source and the second magnetic field source, the electrochemical cell comprising an anode and a cathode, wherein the anode and the cathode are in a channel configured to contain an electrolyte stream comprising an iron-containing feedstock, and wherein the anode and the cathode are configured to contact the electrolyte stream, and wherein the electrochemical reactor is configured to electrochemically reduce at least a portion of the iron-containing feedstock to iron metal at the cathode and in a magnetic field provided by the first magnetic field source, the second magnetic field source, or a combination thereof.
    Type: Application
    Filed: November 8, 2024
    Publication date: May 8, 2025
    Applicant: Form Energy, Inc.
    Inventors: Kostubh Agarwal, Janna Rathert, Joseph Stephen Manser, Julia Sokol
  • Publication number: 20250146155
    Abstract: An electrochemical reactor system includes: an electrochemical cell, having: an anode; a cathode; an electrolyte stream including an electrolyte and an iron-containing feedstock containing feedstock particles; and a channel that contains the electrolyte stream; and a magnetic field source positioned to provide a magnetic field at the surface of the cathode. The electrochemical cell electrochemically reduces the iron-containing feedstock to form iron particles at a surface of the cathode and in the magnetic field. The feedstock particles have an average particle size in at least one dimension of 10 micrometers or less, and the iron particles have an average particle size in at least one dimension of 50 to 1,000 micrometers, or the feedstock particles have an average particle size in at least one dimension of 25 micrometers or greater, and the iron particles have an average particle size in at least one dimension of 0.1 to 20 micrometers.
    Type: Application
    Filed: November 8, 2024
    Publication date: May 8, 2025
    Applicant: Form Energy, Inc.
    Inventors: Janna Rathert, Alex Luyima, Joseph Stephen Manser
  • Publication number: 20250051947
    Abstract: An electrochemical reactor, including a channel for containing and directing flow of an electrolyte stream, wherein the electrolyte stream includes an electrolyte and an iron-containing feedstock; an anode and a cathode positioned in contact with the channel; and a source of a magnetic field positioned in proximity to the cathode, wherein the electrochemical reactor is configured to electrochemically reduce at least a portion of the iron-containing feedstock to iron metal at a surface of the cathode and in a magnetic field of the source, and wherein the at least a portion of the iron-containing feedstock is electrochemically reduced to the iron metal at a current efficiency of at least 0.75, wherein the current efficiency is a ratio of charge used for the reduction of the iron-containing feedstock to a total charge provided to the cathode.
    Type: Application
    Filed: August 6, 2024
    Publication date: February 13, 2025
    Inventors: Janna Rathert, Joseph S. Manser, Julia Sokol
  • Publication number: 20250051948
    Abstract: An electrochemical reactor comprising a source of a magnetic field positioned in proximity to a cathode and configured to generate a magnetic field; and an electrochemical cell comprising an anode and the cathode, and further comprising a catholyte channel configured to direct a catholyte stream comprising an iron-containing feedstock to the cathode; an anolyte channel configured to direct an anolyte stream comprising a metal chloride to the anode, wherein the catholyte channel and the anolyte channel are disposed between the cathode and the anode; and a separator disposed between the catholyte channel and the anolyte channel, wherein the electrochemical reactor is configured to electrochemically oxidize chloride anions to chlorine gas at a surface of the anode, and wherein the electrochemical reactor is further configured to electrochemically reduce the iron-containing feedstock to an iron particle comprising iron metal at the surface of the cathode and in the magnetic field.
    Type: Application
    Filed: August 6, 2024
    Publication date: February 13, 2025
    Inventors: Joseph S. Manser, Janna Rathert, Alex Luyima, Julia Sokol
  • Publication number: 20250011959
    Abstract: Methods and systems of the present disclosure are generally directed to switching operation of one or more electrochemical cells of an electrowinning plant between a charge mode and a discharge mode. In the charge mode, the one or more electrochemical cells may reduce metal from an oxidized state to a zero valence state with a first electric current applied across the one or more electrochemical cells. In the discharge mode, the one or more electrochemical cells may oxidize at least some of the metal from the zero valence state to the oxidized state to generate a second electric current, oppositely charged relative to the first electric current, to generate electricity (e.g., for delivery to the grid). Operation of the one or more electrochemical cells of the electrowinning plant may be selectively changed between the charge mode and the discharge mode based on, for example, availability/cost of electricity from the grid.
    Type: Application
    Filed: July 3, 2024
    Publication date: January 9, 2025
    Inventors: Liang SU, Karen THOMAS-ALYEA, Janna RATHERT, Jeffrey POIRIER, Joseph Stephen MANSER