Patents by Inventor Janne Johannes Hellsten

Janne Johannes Hellsten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11734890
    Abstract: A three-dimensional (3D) model of an object is recovered from two-dimensional (2D) images of the object. Each image in the set of 2D images includes the object captured from a different camera position and deformations of a base mesh that defines the 3D model may be computed corresponding to each image. The 3D model may also include a texture map that represents the lighting and material properties of the 3D model. Recovery of the 3D model relies on analytic antialiasing to provide a link between pixel colors in the 2D images and geometry of the 3D model. A modular differentiable renderer design yields high performance by leveraging existing, highly optimized hardware graphics pipelines to reconstruct the 3D model. The differential renderer renders images of the 3D model and differences between the rendered images and reference images are propagated backwards through the rendering pipeline to iteratively adjust the 3D model.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: August 22, 2023
    Assignee: NVIDIA Corporation
    Inventors: Samuli Matias Laine, Janne Johannes Hellsten, Tero Tapani Karras, Yeongho Seol, Jaakko T. Lehtinen, Timo Oskari Aila
  • Patent number: 11620521
    Abstract: A style-based generative network architecture enables scale-specific control of synthesized output data, such as images. During training, the style-based generative neural network (generator neural network) includes a mapping network and a synthesis network. During prediction, the mapping network may be omitted, replicated, or evaluated several times. The synthesis network may be used to generate highly varied, high-quality output data with a wide variety of attributes. For example, when used to generate images of people's faces, the attributes that may vary are age, ethnicity, camera viewpoint, pose, face shape, eyeglasses, colors (eyes, hair, etc.), hair style, lighting, background, etc. Depending on the task, generated output data may include images, audio, video, three-dimensional (3D) objects, text, etc.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: April 4, 2023
    Assignee: NVIDIA Corporation
    Inventors: Tero Tapani Karras, Samuli Matias Laine, Jaakko T. Lehtinen, Miika Samuli Aittala, Janne Johannes Hellsten, Timo Oskari Aila
  • Patent number: 11605001
    Abstract: A style-based generative network architecture enables scale-specific control of synthesized output data, such as images. During training, the style-based generative neural network (generator neural network) includes a mapping network and a synthesis network. During prediction, the mapping network may be omitted, replicated, or evaluated several times. The synthesis network may be used to generate highly varied, high-quality output data with a wide variety of attributes. For example, when used to generate images of people's faces, the attributes that may vary are age, ethnicity, camera viewpoint, pose, face shape, eyeglasses, colors (eyes, hair, etc.), hair style, lighting, background, etc. Depending on the task, generated output data may include images, audio, video, three-dimensional (3D) objects, text, etc.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: March 14, 2023
    Assignee: NVIDIA Corporation
    Inventors: Tero Tapani Karras, Samuli Matias Laine, Jaakko T. Lehtinen, Miika Samuli Aittala, Janne Johannes Hellsten, Timo Oskari Aila
  • Publication number: 20220405980
    Abstract: Systems and methods are disclosed for fused processing of a continuous mathematical operator. Fused processing of continuous mathematical operations, such as pointwise non-linear functions without storing intermediate results to memory improves performance when the memory bus bandwidth is limited. In an embodiment, a continuous mathematical operation including at least two of convolution, upsampling, pointwise non-linear function, and downsampling is executed to process input data and generate alias-free output data. In an embodiment, the input data is spatially tiled for processing in parallel such that the intermediate results generated during processing of the input data for each tile may be stored in a shared memory within the processor. Storing the intermediate data in the shared memory improves performance compared with storing the intermediate data to the external memory and loading the intermediate data from the external memory.
    Type: Application
    Filed: December 27, 2021
    Publication date: December 22, 2022
    Inventors: Tero Tapani Karras, Miika Samuli Aittala, Samuli Matias Laine, Erik Andreas Härkönen, Janne Johannes Hellsten, Jaakko T. Lehtinen, Timo Oskari Aila
  • Publication number: 20220405880
    Abstract: Systems and methods are disclosed that improve output quality of any neural network, particularly an image generative neural network. In the real world, details of different scale tend to transform hierarchically. For example, moving a person's head causes the nose to move, which in turn moves the skin pores on the nose. Conventional generative neural networks do not synthesize images in a natural hierarchical manner: the coarse features seem to mainly control the presence of finer features, but not the precise positions of the finer features. Instead, much of the fine detail appears to be fixed to pixel coordinates which is a manifestation of aliasing. Aliasing breaks the illusion of a solid and coherent object moving in space. A generative neural network with reduced aliasing provides an architecture that exhibits a more natural transformation hierarchy, where the exact sub-pixel position of each feature is inherited from underlying coarse features.
    Type: Application
    Filed: December 27, 2021
    Publication date: December 22, 2022
    Inventors: Tero Tapani Karras, Miika Samuli Aittala, Samuli Matias Laine, Erik Andreas Härkönen, Janne Johannes Hellsten, Jaakko T. Lehtinen, Timo Oskari Aila
  • Publication number: 20220051481
    Abstract: A three-dimensional (3D) model of an object is recovered from two-dimensional (2D) images of the object. Each image in the set of 2D images includes the object captured from a different camera position and deformations of a base mesh that defines the 3D model may be computed corresponding to each image. The 3D model may also include a texture map that represents the lighting and material properties of the 3D model. Recovery of the 3D model relies on analytic antialiasing to provide a link between pixel colors in the 2D images and geometry of the 3D model. A modular differentiable renderer design yields high performance by leveraging existing, highly optimized hardware graphics pipelines to reconstruct the 3D model. The differential renderer renders images of the 3D model and differences between the rendered images and reference images are propagated backwards through the rendering pipeline to iteratively adjust the 3D model.
    Type: Application
    Filed: February 15, 2021
    Publication date: February 17, 2022
    Inventors: Samuli Matias Laine, Janne Johannes Hellsten, Tero Tapani Karras, Yeongho Seol, Jaakko T. Lehtinen, Timo Oskari Aila
  • Publication number: 20210383241
    Abstract: Embodiments of the present disclosure relate to a technique for training neural networks, such as a generative adversarial neural network (GAN), using a limited amount of data. Training GANs using too little example data typically leads to discriminator overfitting, causing training to diverge and produce poor results. An adaptive discriminator augmentation mechanism is used that significantly stabilizes training with limited data providing the ability to train high-quality GANs. An augmentation operator is applied to the distribution of inputs to a discriminator used to train a generator, representing a transformation that is invertible to ensure there is no leakage of the augmentations into the images generated by the generator. Reducing the amount of training data that is needed to achieve convergence has the potential to considerably help many applications and may the increase use of generative models in fields such as medicine.
    Type: Application
    Filed: March 24, 2021
    Publication date: December 9, 2021
    Inventors: Tero Tapani Karras, Miika Samuli Aittala, Janne Johannes Hellsten, Samuli Matias Laine, Jaakko T. Lehtinen, Timo Oskari Aila
  • Publication number: 20210150369
    Abstract: A style-based generative network architecture enables scale-specific control of synthesized output data, such as images. During training, the style-based generative neural network (generator neural network) includes a mapping network and a synthesis network. During prediction, the mapping network may be omitted, replicated, or evaluated several times. The synthesis network may be used to generate highly varied, high-quality output data with a wide variety of attributes. For example, when used to generate images of people's faces, the attributes that may vary are age, ethnicity, camera viewpoint, pose, face shape, eyeglasses, colors (eyes, hair, etc.), hair style, lighting, background, etc. Depending on the task, generated output data may include images, audio, video, three-dimensional (3D) objects, text, etc.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Tero Tapani Karras, Samuli Matias Laine, Jaakko T. Lehtinen, Miika Samuli Aittala, Janne Johannes Hellsten, Timo Oskari Aila
  • Publication number: 20210150357
    Abstract: A style-based generative network architecture enables scale-specific control of synthesized output data, such as images. During training, the style-based generative neural network (generator neural network) includes a mapping network and a synthesis network. During prediction, the mapping network may be omitted, replicated, or evaluated several times. The synthesis network may be used to generate highly varied, high-quality output data with a wide variety of attributes. For example, when used to generate images of people's faces, the attributes that may vary are age, ethnicity, camera viewpoint, pose, face shape, eyeglasses, colors (eyes, hair, etc.), hair style, lighting, background, etc. Depending on the task, generated output data may include images, audio, video, three-dimensional (3D) objects, text, etc.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Tero Tapani Karras, Samuli Matias Laine, Jaakko T. Lehtinen, Miika Samuli Aittala, Janne Johannes Hellsten, Timo Oskari Aila