Patents by Inventor Jannetje Maatje van den Berge

Jannetje Maatje van den Berge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7335295
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: February 26, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Patent number: 7264789
    Abstract: A colloidal suspension of LEV structure type crystalline molecular sieve, making the suspension by washing smaller crystallites from a previously found solid LEV product, and using the suspension as seeds in further crystalline molecular sieve syntheses.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: September 4, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje Van Den Berge, legal representative, Machteld Maria Wilfried Mertens, Marcel Johannes Janssen, Cornelius Wilhelmus Maria Van Oorschot, David E. W. Vaughan, Johannes Petrus Verduijn, deceased
  • Patent number: 7049259
    Abstract: Layers comprising a molecular sieve layer on a porous or non-porous support, having uniform properties and allowing high flux are prepared from colloidal solutions of zeolite or other molecular sieve precursors (particle size less than 100 nm), by deposition, e.g., by spin or dip-coating, or by in situ crystallization.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: May 23, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry William Deckman, Allan Joseph Jacobson, James Alexander McHenry, Klaas Keizer, Zeger Alexander Eduard Pieter Vroon, Lothar Ruediger Czarnetzki, Frank Wenyih Lai, Antonie Jan Bons, Anthonie Jan Burggraaf, Jannetje Maatje van den Berge, legal representative, Edward William Corcoran, Jr., Wilfred Jozef Mortier, Johannes Petrus Verduijn, deceased
  • Patent number: 6977320
    Abstract: There is provided a zeolite bound zeolite catalyst which can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises a first zeolite and a binder comprising a second zeolite. The structure type of the second zeolite is different from the structure type of the first zeolite. The zeolite bound zeolite finds particular application in hydrocarbon conversion process, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: December 20, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary D. Mohr, Johannes Petrus Verduijn
  • Patent number: 6974889
    Abstract: Colloidal crystalline molecular sieve seeds are used in phosphorus-containing crystalline molecular sieve manufacture. Certain of the products have enhanced utility in oxygenate conversions.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: December 13, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, legal representative, Machteld Maria Wilfried Mertens, Wilfried Jozef Mortier, Marcel Johannes Janssen, Cornelius Maria Wilhelmus Van Oorschot, Johannes Petrus Verduijn, deceased
  • Patent number: 6958305
    Abstract: There is provided a zeolite bound zeolite catalyst which can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises a first zeolite and a binder comprising a second zeolite. The structure type of the second zeolite is different from the structure type of the first zeolite. The zeolite bound zeolite finds particular application in hydrocarbon conversion process, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: October 25, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary D. Mohr, Johannes Petrus Verduijn
  • Patent number: 6656345
    Abstract: The invention provides a method for converting a hydrocarbon feedstock to propylene comprising: contacting an olefinic hydrocarbon feedstock boiling in the naphtha range with a catalyst comprising a zeolitic catalyst selected from the group consisting of medium pore zeolites having a ratio of silica to alumina above 200 and pore diameter less than 0.7 nm under cracking conditions to selectively produce propylene. The preferred catalyst comprises of a zeolite having an 8, 10, or 12 membered ring pore structure. The preferred catalysts are selected from the group consisting of zeolites from the families MFI, MEL, MTW, TON, MTT, FER, MFS, and the zeolites ZSM-21, ZSM-38 and ZSM-48. Preferably the method is carried out to produce propylene with greater than 50% specificity, more preferably, the propylene to butylene ratio is at least 2:1 or a propylene to ethylene ratio of at least 4:1. The olefinic hydrocarbon feedstock consists essentially of hydrocarbons boiling within the range of 18° to 220° C.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: December 2, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Mechilium (Marcel) Johannes Gerardus Janssen, Luc Roger Marc Martens, Machteld Maria Mertens, Philip Andrew Ruziska, Lynn L. Zhao, Jannetje Maatje van den Berge
  • Patent number: 6627577
    Abstract: There is provided catalysts and conversion processes for converting hydrocarbons using the catalysts. The catalysts comprises a first alumino-phosphospho-molecular sieves and a binder comprising a second alumino-phopho-molecular sieves. Exemplary conversion processes include the conversion of oxygenates to olefins, dewaxing, reforming, dealkylation, dehydrogenation, transalkylation, alkylation, and isomerization.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 30, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Scott Smith, Gary David Mohr, Jannetje Maatje van den Berge
  • Publication number: 20030127360
    Abstract: This invention relates to a process for producing zeolite-bound high silica zeolites and the use of the zeolite-bound high silica zeolite produced by the process for hydrocarbon conversion. The process is carried out by forming an extrudable paste comprising a mixture of high silica zeolite in the hydrogen form, water, silica, and optionally an extrusion aid, extruding the extrudable paste to form silica-bound high silica zeolite extrudates, and then converting the silica of the binder to a zeolite binder. The zeolite-bound high silica zeolite produced by the process comprises high silica zeolite crystals that are bound together by zeolite binder crystals. The zeolite-bound high silica zeolite finds particular application in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportionation of toluene, isomerization, and transalkylation reactions.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 10, 2003
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr
  • Publication number: 20030121827
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Application
    Filed: December 4, 2002
    Publication date: July 3, 2003
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Publication number: 20030027710
    Abstract: There is provided catalysts and conversion processes for converting hydrocarbons using the catalysts. The catalysts comprises a first alumino-phosphospho-molecular sieves and a binder comprising a second alumino-phopho-molecular sieves. Exemplary conversion processes include the conversion of oxygenates to olefins, dewaxing, reforming, dealkylation, dehydrogenation, transalkylation, alkylation, and isomerization.
    Type: Application
    Filed: May 31, 2002
    Publication date: February 6, 2003
    Inventors: Robert Scott Smith, Gary David Mohr, Jannetje Maatje Van den Berge
  • Publication number: 20020183192
    Abstract: There is provided a zeolite bound zeolite catalyst which can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises a first zeolite and a binder comprising a second zeolite. The structure type of the second zeolite is different from the structure type of the first zeolite. The zeolite bound zeolite finds particular application in hydrocarbon conversion process, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Application
    Filed: April 24, 2002
    Publication date: December 5, 2002
    Inventors: Johannes Petrus Verduijn, Gary D. Mohr, Jannetje Maatje Van den Berge
  • Publication number: 20020115555
    Abstract: This invention relates to a process for producing zeolite-bound high silica zeolites and the use of the zeolite-bound high silica zeolite produced by the process for hydrocarbon conversion. The process is carried out by forming an extrudable paste comprising a mixture of high silica zeolite in the hydrogen form, water, silica, and optionally an extrusion aid, extruding the extrudable paste to form silica-bound high silica zeolite extrudates, and then converting the silica of the binder to a zeolite binder. The zeolite-bound high silica zeolite produced by the process comprises high silica zeolite crystals that are bound together by zeolite binder crystals. The zeolite-bound high silica zeolite finds particular application in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportionation of toluene, isomerization, and transalkylation reactions.
    Type: Application
    Filed: November 14, 2001
    Publication date: August 22, 2002
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr
  • Patent number: 6350428
    Abstract: This invention relates to a process for producing zeolite-bound FAU structure type zeolite having excellent mechanical strength and containing reduced amounts of zeolite P and the use of the zeolite-bound FAU structure type zeolites produced by the process. The zeolite-bound FAU structure type zeolite is prepared by converting the silica of a silica-bound FAU structure type aggregate in an aqueous mixture containing an effective amount of crown ether, e.g., 15-crown-5 and 18-crown-6, to suppress the formation of zeolite P and sufficient hydroxy ions to cause the silica to be converted to the zeolite. The zeolite-bound FAU structure type zeolite finds particular application in adsorption processes and hydrocarbon conversion processes such as catalytic cracking, hydrocracking, and reforming.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: February 26, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes Petrus Verduijn, by Jannetje Maatje van den Berge, Machteld Mertens
  • Patent number: 6300535
    Abstract: The preparation of zeolite bound zeolite comprising zeolite core crystals other than MFI structure zeolite which are bound by MFI structure type zeolite and the use of the zeolite bound by MFI structure type zeolite prepared by the process as an adsorbent or as a catalyst for hydrocarbon conversion. The zeolite bound zeolite is produced by including seed crystals of MFI structure type zeolite into the silica bound aggregate forming mixture and then converting the silica binder of the aggregate to the MFI binder crystals. The resulting zeolite bound zeolite has good strength and integrity.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: October 9, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Machteld Maria Mertens, Wilfried Jozef Mortier
  • Patent number: 6160191
    Abstract: A process for converting hydrocarbons by contacting a hydrocarbon feedstream under hydrocarbon conversion conditions with a large crystal zeolite catalyst. The large crystal zeolite of the catalyst used in the hydrocarbon conversion process is made by heating an aqueous zeolite synthesis mixture under agitation to a temperature equal to or less than the effective nucleation temperature of the synthesis mixture. After this step, the aqueous synthesis mixture is heated in the absence of agitation to a temperature equal to or greater than the effective nucleation temperature of the aqueous zeolite synthesis mixture. The process finds particular application in hydrocarbon conversion processes where reduced non-selective acidity is important for reaction selectivity and/or the maintenance of catalyst activity, e.g., toluene disproportionation, dealkylation, alkylation, and transalkylation.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: December 12, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Robert Scott Smith, Johannes Petrus Verduijn, deceased, by Jannetje Maatje van den Berge, executrix, Gary David Mohr, Thomas Herman Colle
  • Patent number: 5993642
    Abstract: There is provided a process for converting hydrocarbons which utilizes a zeolite bound zeolite catalyst that has enhanced performance when utilized in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportionation of toluene, isomerization, and transalkylation reactions. The catalyst comprises a first zeolite having particles of greater than about 0.1 micron average particle size and a binder comprising second zeolite particles having an average particle size less than said first particles.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: November 30, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Gary David Mohr, Tan Jen Chen, Kenneth Ray Clem, Mechilium Johannes Geradus Janssen, Phillip Andrew Ruziska, Johannes Petrus Verduijn, Jannetje Maatje van den Berge
  • Patent number: 5958366
    Abstract: Large crystal zeolites are prepared by heating a zeolite synthesis mixture under agitation to a temperature equal to or less than the effective nucleation temperature of the zeolite synthesis mixture and thereafter the zeolite synthesis mixture is heated without agitation to a temperature equal to or greater than the effective nucleation temperature of the zeolite synthesis mixture.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: September 28, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Robert Scott Smith, Johannes Petrus Verduijn, deceased, Jannetje Maatje van den Berge, executrix, Thomas H. Colle, Gary David Mohr, Gotz Burgfels, Josef Schonlinner