Patents by Inventor Janusz Murakowski

Janusz Murakowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210265727
    Abstract: The subject matter described herein relates to various antenna element configurations, antenna array configurations, their operations including various systems and methods to generate modulated data for transmission by an RF antenna array via an optical processing engine. The subject matter includes optical processing engine structure and methods (e.g., modulating in the optical domain, MIMO and spatial modulation via RF beam formation, coherent transmission of RF signal components, coherent operation of spatially separate RF antenna arrays) that may be implemented with the various RF antenna array structures. In some examples, the system combines the virtues of digital, analog and optical processing to arrive at a solution for scalable, non-blocking, simultaneous transmission to multiple UE-s. Much of the system architecture is independent of the RF carrier frequency, and different frequency bands can be accessed easily and rapidly by tuning the optical source (TOPS).
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventor: Janusz Murakowski
  • Publication number: 20210257729
    Abstract: An apparatus and method is provided to correlate radiation beams, such as RF beams, optical beams, and/or acoustic beams. A plurality of sensors are distributed according to a first pattern and disposed adjacent to a first interference region. The plurality of sensors may capture incoming radiation and convert the incoming radiation to a plurality of signals. A plurality of radiating elements are distributed according to a second pattern that differs from the first pattern and are disposed adjacent to a second interference region. A plurality of channels are connected between the sensors and the radiating elements, each channel connecting a corresponding sensor to receive a corresponding signal. Each of the radiating elements is in communication with a corresponding one of the plurality of channels to provide an outgoing radiation corresponding to the signal received by the channel.
    Type: Application
    Filed: January 28, 2021
    Publication date: August 19, 2021
    Inventors: Janusz Murakowski, Garrett Schneider
  • Publication number: 20210242941
    Abstract: An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. In some examples, the system and method may record the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
    Type: Application
    Filed: January 18, 2021
    Publication date: August 5, 2021
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Publication number: 20210232045
    Abstract: This disclosure is directed to two-dimensional conformal optically-fed phased arrays and methods for manufacturing the same. The method includes providing a wafer substrate, depositing a first cladding layer on the wafer substrate, and depositing a core layer on the first cladding layer. The method further includes photolithographically patterning the core layer to provide a plurality of optical waveguide cores, and depositing a second cladding layer on the core layer to cover the plurality of optical waveguide cores to provide a plurality of optical waveguides. In addition, the method includes forming a plurality of antennas on the second cladding layer, each antenna of the plurality of antennas located near a termination of a corresponding optical waveguide of the plurality of optical waveguides, and providing a plurality of photodiodes on the second cladding layer, each photodiode of the plurality of photodiodes connected to a corresponding antenna.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 29, 2021
    Applicant: Phase Sensitive Innovations, Inc.
    Inventors: Shouyuan Shi, Dennis Prather, Peng Yao, Janusz MURAKOWSKI
  • Patent number: 11012159
    Abstract: A method of RF signal processing comprises receiving an incoming RF signal at each of a plurality of antenna elements that are arranged in a first pattern. The received RF signals from each of the plurality of antenna elements are modulated onto an optical carrier to generate a plurality of modulated signals that each have at least one sideband. The modulated signals are directed along a corresponding plurality of optical channels with outputs arranged in a second pattern corresponding to the first pattern. A composite optical signal is formed using light emanating from the outputs of the plurality of optical channels. Non-spatial information contained in at least one of the received RF signals is extracted from the composite signal.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: May 18, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Chris Schuetz, Janusz Murakowski, Garrett Schneider, Shouyuan Shi, Dennis Prather
  • Patent number: 11005178
    Abstract: The subject matter described herein relates to various antenna element configurations, antenna array configurations, their operations including various systems and methods to generate modulated data for transmission by an RF antenna array via an optical processing engine. The subject matter includes optical processing engine structure and methods (e.g., modulating in the optical domain, MIMO and spatial modulation via RF beam formation, coherent transmission of RF signal components, coherent operation of spatially separate RF antenna arrays) that may be implemented with the various RF antenna array structures. In some examples, the system combines the virtues of digital, analog and optical processing to arrive at a solution for scalable, non-blocking, simultaneous transmission to multiple UE-s. Much of the system architecture is independent of the RF carrier frequency, and different frequency bands can be accessed easily and rapidly by tuning the optical source (TOPS).
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: May 11, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventor: Janusz Murakowski
  • Patent number: 10950938
    Abstract: An transmitter to be used in wireless multi-user MIMO has been described above. The system combines the virtues of digital, analog and optical processing to arrive at a solution for scalable, non-blocking, simultaneous transmission to multiple UE-s. The system architecture is independent of the RF carrier frequency, and different frequency bands can be accessed easily and rapidly by tuning the optical source (TOPS). The data channels are established in the digital domain and the RF beam-forming accuracy is only limited by the available resolution of DAC, which can be as high as 16 bits for 2.8 GSPS in off-the-shelf components.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: March 16, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventor: Janusz Murakowski
  • Patent number: 10908499
    Abstract: This disclosure is directed to two-dimensional conformal optically-fed phased arrays and methods for manufacturing the same. The method includes providing a wafer substrate, depositing a first cladding layer on the wafer substrate, and depositing a core layer on the first cladding layer. The method further includes photolithographically patterning the core layer to provide a plurality of optical waveguide cores, and depositing a second cladding layer on the core layer to cover the plurality of optical waveguide cores to provide a plurality of optical waveguides. In addition, the method includes forming a plurality of antennas on the second cladding layer, each antenna of the plurality of antennas located near a termination of a corresponding optical waveguide of the plurality of optical waveguides, and providing a plurality of photodiodes on the second cladding layer, each photodiode of the plurality of photodiodes connected to a corresponding antenna.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: February 2, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Shouyuan Shi, Dennis Prather, Peng Yao, Janusz Murakowski
  • Patent number: 10911142
    Abstract: An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. The system and method involves recording with photodetectors the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 2, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Chris Schuetz, Garrett Schneider, Shouyuan Shi
  • Patent number: 10897309
    Abstract: A system and method reconstructs RF sources in k-space by utilizing interference between RF signals detected by an array of antennas. The system and method may include detecting an RF interference pattern resulting from interference between RF signals in an RF coupler, where the RF signals are detected by the antennas and provided to the RF coupler by RF waveguides. The RF waveguides may have unequal RF path lengths. K-space information of the RF sources may be reconstructed from the detected RF interference pattern using known tomography reconstruction methods.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 19, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Patent number: 10690850
    Abstract: A method and apparatus for simultaneously modulating at least two distinct characteristics of an optical carrier propagating in an optical waveguide with at least two electrical signals includes transmitting an optical beam that includes the optical carrier into an optical waveguide defined in electro-optic material, and applying the at least two electrical signals at the same time to generate an electric field in the optical waveguide. The instantaneous predominant orientation of the electric field in the optical waveguide generated by the applied at least two electrical signals depends on the relative instantaneous values of the applied electrical signals. The at least two distinct characteristics of the optical carrier propagating in the optical waveguide are simultaneously and independently modulated depending on the predominant orientation of the electric field in the optical waveguide as a result of the application of the at least two electrical signals.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 23, 2020
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Timothy Creazzo
  • Publication number: 20200153094
    Abstract: An transmitter to be used in wireless multi-user MIMO has been described above. The system combines the virtues of digital, analog and optical processing to arrive at a solution for scalable, non-blocking, simultaneous transmission to multiple UE-s. The system architecture is independent of the RF carrier frequency, and different frequency bands can be accessed easily and rapidly by tuning the optical source (TOPS). The data channels are established in the digital domain and the RF beam-forming accuracy is only limited by the available resolution of DAC, which can be as high as 16 bits for 2.8 GSPS in off-the-shelf components.
    Type: Application
    Filed: October 4, 2019
    Publication date: May 14, 2020
    Inventor: Janusz Murakowski
  • Publication number: 20200145110
    Abstract: A method of RF signal processing comprises receiving an incoming RF signal at each of a plurality of antenna elements that are arranged in a first pattern. The received RF signals from each of the plurality of antenna elements are modulated onto an optical carrier to generate a plurality of modulated signals that each have at least one sideband. The modulated signals are directed along a corresponding plurality of optical channels with outputs arranged in a second pattern corresponding to the first pattern. A composite optical signal is formed using light emanating from the outputs of the plurality of optical channels. Non-spatial information contained in at least one of the received RF signals is extracted from the composite signal.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Inventors: Chris Schuetz, Janusz Murakowski, Garrett Schneider, Shouyuan Shi, Dennis Prather
  • Patent number: 10571559
    Abstract: A vehicle such as a helicopter may scan a scene using a transmitter mounted on a rotating part like a rotor and a receiver mounted on a body of the vehicle. Based on a Doppler shift caused by the rotation of the rotating part, patterns may be recorded and used to develop a holographic image of the scene.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 25, 2020
    Assignee: Phase Sensitive Innovations, Inc.
    Inventor: Janusz Murakowski
  • Patent number: 10573972
    Abstract: A phased antenna array comprises a plurality of antennas and photodiodes arranged on a substrate. Each antenna is driven by an electrical signal output by the photodiode. The photodiodes each receive an optical signal via an optical fiber. The optical fibers conform to the sheet-like shape of the antenna array (which may be planar or curved) and optically communicate with a corresponding photodiode via a corresponding reflector, such as a ninety degree reflector. The reflectors may comprise a v-groove in a silicon substrate on which the optical fiber is positioned and a reflecting surface. Each reflector may be attached to the substrate or a ground plane positioned parallel to the substrate and the optical fiber may connect to the reflector in a direction running parallel to the phased antenna array. This optical feed network may accommodate tight spacing of the antenna elements (such as spacing less than 5 mm apart) with a thin profile.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: February 25, 2020
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Dennis Prather, Peng Yao
  • Patent number: 10536220
    Abstract: A method of RF signal processing comprises receiving an incoming RF signal at each of a plurality of antenna elements that are arranged in a first pattern. The received RF signals from each of the plurality of antenna elements are modulated onto an optical carrier to generate a plurality of modulated signals that each have at least one sideband. The modulated signals are directed along a corresponding plurality of optical channels with outputs arranged in a second pattern corresponding to the first pattern. A composite optical signal is formed using light emanating from the outputs of the plurality of optical channels. Non-spatial information contained in at least one of the received RF signals is extracted from the composite signal.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: January 14, 2020
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Chris Schuetz, Janusz Murakowski, Garrett Schneider, Shouyuan Shi, Dennis Prather
  • Publication number: 20190372219
    Abstract: An RF receiver may include antenna elements to receive RF signals, and electro-optic modulators to generate corresponding upconverted optical signals by mixing an RF signal with an optical carrier beam. The RF receiver may include a transmission array having a first bundle of optical waveguides that receive and transmit upconverted optical signals from their ends. The ends may be arranged in a first pattern. The RF receiver may include an interference space to receive the upconverted optical signals to form a composite beam, and an array of single mode optical fibers that have lenses positioned in a detection plane to receive a portion of the composite beam. The first pattern of the ends generates an RF emitter interference pattern at the detection plane, and the single mode optical fiber lenses have a geometric arrangement that corresponds to the first RF emitter interference pattern.
    Type: Application
    Filed: May 1, 2019
    Publication date: December 5, 2019
    Inventors: Garrett Schneider, Christopher Schuetz, Janusz Murakowski, Tom Dillon, Shouyuan Shi, Dennis Prather
  • Publication number: 20190319356
    Abstract: In the disclosed optically-fed transmitting phased-array architecture, transmitting signals are converted between the electrical domain and the optical domain by using electro-optic (EO) modulators and photodiodes. RF signal(s) generated from a relatively low frequency source modulate an optical carrier signal. This modulated optical signal can be remotely imparted to photodiodes via optical fibers. Desired RF signals may be recovered by photo-mixing at the photodiodes whose wired RF outputs are then transmitted to radiating elements of the antennas. The antenna array may generate a physical RF beam that transmits an RF signal that is focused on one or more selectable locations. Multiple RF beams may be simultaneously generated, each RF beam being capable of being directed to focus on a unique location or set of locations.
    Type: Application
    Filed: April 16, 2019
    Publication date: October 17, 2019
    Inventors: Shouyuan Shi, Dennis Prather, Janusz Murakowski, Matthew Konkol
  • Patent number: 10439282
    Abstract: An transmitter to be used in wireless multi-user MIMO has been described above. The system combines the virtues of digital, analog and optical processing to arrive at a solution for scalable, non-blocking, simultaneous transmission to multiple UE-s. The system architecture is independent of the RF carrier frequency, and different frequency bands can be accessed easily and rapidly by tuning the optical source (TOPS). The data channels are established in the digital domain and the RF beam-forming accuracy is only limited by the available resolution of DAC, which can be as high as 16 bits for 2.8 GSPS in off-the-shelf components.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: October 8, 2019
    Assignee: Phase Sensitive Innovations, Inc.
    Inventor: Janusz Murakowski
  • Publication number: 20190305849
    Abstract: A system and method reconstructs RF sources in k-space by utilizing interference between RF signals detected by an array of antennas. The system and method may include detecting an RF interference pattern resulting from interference between RF signals in an RF coupler, where the RF signals are detected by the antennas and provided to the RF coupler by RF waveguides. The RF waveguides may have unequal RF path lengths. K-space information of the RF sources may be reconstructed from the detected RF interference pattern using known tomography reconstruction methods.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 3, 2019
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi