Patents by Inventor Jared Barr
Jared Barr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12269911Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain an alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.Type: GrantFiled: April 25, 2023Date of Patent: April 8, 2025Assignee: Chevron Phillips Chemical Company LPInventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
-
Publication number: 20250011481Abstract: Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.Type: ApplicationFiled: September 12, 2024Publication date: January 9, 2025Inventors: Max P. McDaniel, Graham R. Lief, Qing Yang, Carlos A. Cruz, Yongwoo Inn, Jared Barr
-
Patent number: 12122857Abstract: Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.Type: GrantFiled: December 16, 2021Date of Patent: October 22, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Graham R. Lief, Qing Yang, Carlos A. Cruz, Yongwoo Inn, Jared Barr
-
Patent number: 12077627Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain a bound alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.Type: GrantFiled: October 24, 2023Date of Patent: September 3, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew T. Blagg, Christopher E. Wittner, Alan L Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
-
Patent number: 12017970Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.Type: GrantFiled: September 1, 2023Date of Patent: June 25, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Masud M. Monwar, Jared Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
-
Patent number: 11999679Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.Type: GrantFiled: August 24, 2023Date of Patent: June 4, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
-
Publication number: 20240084052Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain a bound alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.Type: ApplicationFiled: October 24, 2023Publication date: March 14, 2024Inventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew T. Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
-
Publication number: 20230416169Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.Type: ApplicationFiled: September 1, 2023Publication date: December 28, 2023Inventors: Masud M. Monwar, Jared Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
-
Publication number: 20230391700Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.Type: ApplicationFiled: August 24, 2023Publication date: December 7, 2023Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
-
Publication number: 20230340166Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain an alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.Type: ApplicationFiled: April 25, 2023Publication date: October 26, 2023Inventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
-
Patent number: 11753358Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.Type: GrantFiled: July 19, 2022Date of Patent: September 12, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
-
Publication number: 20230192914Abstract: Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.Type: ApplicationFiled: December 16, 2021Publication date: June 22, 2023Inventors: Max P. McDaniel, Graham R. Lief, Qing Yang, Carlos A. Cruz, Yongwoo Inn, Jared Barr
-
Patent number: 11603339Abstract: Processes for cracking an alkane reactant to form a lower aliphatic hydrocarbon product and for converting an alkane reactant into a higher aliphatic hydrocarbon product are disclosed, and these processes include a step of contacting the alkane reactant with a supported chromium (II) catalyst. In addition to the formation of various aliphatic hydrocarbons, such as linear alkanes, branched alkanes, 1-alkenes, and internal alkenes, aromatic hydrocarbons and hydrogen also can be produced.Type: GrantFiled: June 23, 2022Date of Patent: March 14, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Carlos A. Cruz, Max P. McDaniel, Masud M. Monwar, Jared Barr
-
Publication number: 20220348527Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.Type: ApplicationFiled: July 19, 2022Publication date: November 3, 2022Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
-
Publication number: 20220324776Abstract: Processes for cracking an alkane reactant to form a lower aliphatic hydrocarbon product and for converting an alkane reactant into a higher aliphatic hydrocarbon product are disclosed, and these processes include a step of contacting the alkane reactant with a supported chromium (II) catalyst. In addition to the formation of various aliphatic hydrocarbons, such as linear alkanes, branched alkanes, 1-alkenes, and internal alkenes, aromatic hydrocarbons and hydrogen also can be produced.Type: ApplicationFiled: June 23, 2022Publication date: October 13, 2022Inventors: Carlos A. Cruz, Max P. McDaniel, Masud M. Monwar, Jared Barr