Patents by Inventor Jared Casper

Jared Casper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11562733
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. Neither a phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 24, 2023
    Assignee: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Eisen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Ng
  • Patent number: 10540957
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: January 21, 2020
    Assignee: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Y. Ng
  • Publication number: 20190371298
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: BAIDU USA LLC
    Inventors: Awni HANNUN, Carl CASE, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Ng
  • Publication number: 20160171974
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Application
    Filed: June 9, 2015
    Publication date: June 16, 2016
    Applicant: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Y. Ng