Patents by Inventor Jared L. BARR

Jared L. BARR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969718
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: April 30, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Publication number: 20240043360
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and either a supported chromium (VI) catalyst or a supported chromium (II) catalyst are contacted, optionally with UV-visible light irradiation, followed by exposure to an oxidizing atmosphere and then hydrolysis to form a reaction product containing the alcohol compound and/or the carbonyl compound. The presence of oxygen significant increases the amount of alcohol/carbonyl product formed, as well as the formation of oxygenated dimers and trimers of certain hydrocarbon reactants.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Kathy S. Clear
  • Patent number: 11865528
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: July 17, 2023
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11839870
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: December 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Publication number: 20230364595
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 16, 2023
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11814343
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and either a supported chromium (VI) catalyst or a supported chromium (II) catalyst are contacted, optionally with UV-visible light irradiation, followed by exposure to an oxidizing atmosphere and then hydrolysis to form a reaction product containing the alcohol compound and/or the carbonyl compound. The presence of oxygen significant increases the amount of alcohol/carbonyl product formed, as well as the formation of oxygenated dimers and trimers of certain hydrocarbon reactants.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Kathy S. Clear
  • Publication number: 20230321634
    Abstract: A hydrocarbon compound and carbon monoxide are reacted in the presence of either a supported chromium (VI) catalyst or a supported chromium (II) catalyst, optionally with UV-visible light irradiation and/or exposure to an oxidizing atmosphere, followed by removing a reaction product containing an alcohol compound and/or a carbonyl compound from the respective chromium catalyst. Often, the reaction product contains one or more ketone and/or aldehyde compounds.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 12, 2023
    Inventors: Max P. McDaniel, Mitchell D. Refvik, Jeremy M. Praetorius, Kathy S. Clear, Jared L. Barr, Carlos A. Cruz, Masud M. Monwar
  • Patent number: 11780786
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: October 10, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William Chad Ellis
  • Patent number: 11767279
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: September 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Publication number: 20230182121
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 15, 2023
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Publication number: 20220388932
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and either a supported chromium (VI) catalyst or a supported chromium (II) catalyst are contacted, optionally with UV-visible light irradiation, followed by exposure to an oxidizing atmosphere and then hydrolysis to form a reaction product containing the alcohol compound and/or the carbonyl compound. The presence of oxygen significant increases the amount of alcohol/carbonyl product formed, as well as the formation of oxygenated dimers and trimers of certain hydrocarbon reactants.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 8, 2022
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Kathy S. Clear
  • Publication number: 20220356135
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Application
    Filed: July 14, 2022
    Publication date: November 10, 2022
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Patent number: 11440865
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: September 13, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared L. Barr, Kathy S. Clear, William C. Ellis
  • Patent number: 11440864
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 13, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Publication number: 20220266231
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 25, 2022
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11396485
    Abstract: Processes for cracking an alkane reactant to form a lower aliphatic hydrocarbon product and for converting an alkane reactant into a higher aliphatic hydrocarbon product are disclosed, and these processes include a step of contacting the alkane reactant with a supported chromium (II) catalyst. In addition to the formation of various aliphatic hydrocarbons, such as linear alkanes, branched alkanes, 1-alkenes, and internal alkenes, aromatic hydrocarbons and hydrogen also can be produced.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: July 26, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Max P. McDaniel, Masud M. Monwar, Jared L. Barr
  • Patent number: 11376575
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 5, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11345649
    Abstract: Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 31, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Kathy S. Clear, Max P. McDaniel
  • Publication number: 20220081370
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 17, 2022
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel
  • Publication number: 20220033332
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared L. Barr, Kathy S. Clear, William C. Ellis