Patents by Inventor Jared L. Martin

Jared L. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8927443
    Abstract: A biodegradable nonwoven laminate is provided. The laminate comprises a spunbond layer formed from substantially continuous filaments that contain a first aliphatic polyester having a melting point of from about 50° C. to about 160° C. The meltblown layer is formed from microfibers that contain a second aliphatic polyester having a melting point of from about 50° C. to about 160° C. The first aliphatic polyester, the second aliphatic polyester, or both have an apparent viscosity of from about 20 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec-1. The first aliphatic polyester may be the same or different than the second aliphatic polyester.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: January 6, 2015
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, Ross T. Kaufman, Stephen Avedis Baratian, Jared L. Martin
  • Patent number: 7989062
    Abstract: A biodegradable nonwoven web comprising substantially continuous multicomponent filaments is provided. The filaments comprise a first component and a second component. The first component contains at least one high-melting point aliphatic polyester having a melting point of from about 160° C. to about 250° C. and the second component contains at least one low-melting point aliphatic polyester. The melting point of the low-melting point aliphatic polyester is at least about 30° C. less than the melting point of the high-melting point aliphatic polyester. The low-melting point aliphatic polyester has a number average molecular weight of from about 30,000 to about 120,000 Daltons, a glass transition temperature of less than about 25° C., and an apparent viscosity of from about 50 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec?1.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: August 2, 2011
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, John Herbert Conrad, Stephen Avedis Baratian, Jared L. Martin
  • Publication number: 20080287026
    Abstract: A biodegradable nonwoven laminate is provided. The laminate comprises a spunbond layer formed from substantially continuous filaments that contain a first aliphatic polyester having a melting point of from about 50° C. to about 160° C. The meltblown layer is formed from microfibers that contain a second aliphatic polyester having a melting point of from about 50° C. to about 160° C. The first aliphatic polyester, the second aliphatic polyester, or both have an apparent viscosity of from about 20 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec-1. The first aliphatic polyester may be the same or different than the second aliphatic polyester.
    Type: Application
    Filed: April 7, 2006
    Publication date: November 20, 2008
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, Ross T. Kaufman, Stephen Avedis Baratian, Jared L. Martin
  • Publication number: 20080287024
    Abstract: A biodegradable nonwoven web comprising substantially continuous multicomponent filaments is provided. The filaments comprise a first component and a second component. The first component contains at least one high-melting point aliphatic polyester having a melting point of from about 160° C. to about 250° C. and the second component contains at least one low-melting point aliphatic polyester. The melting point of the low-melting point aliphatic polyester is at least about 30° C. less than the melting point of the high-melting point aliphatic polyester. The low-melting point aliphatic polyester has a number average molecular weight of from about 30,000 to about 120,000 Daltons, a glass transition temperature of less than about 25° C., and an apparent viscosity of from about 50 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec?1.
    Type: Application
    Filed: April 7, 2006
    Publication date: November 20, 2008
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, John Herbert Conrad, Stephen Avedis Baratian, Jared L. Martin
  • Patent number: D853656
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: July 9, 2019
    Assignee: O&M Halyard, Inc.
    Inventors: Jared L. Martin, Eric C. Steindorf, David A. Herrera Pineda