Patents by Inventor Jared M. Paulson

Jared M. Paulson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11826993
    Abstract: A thermally conductive curing process adds conductive additives to create pathways for dissipating heat during a curing process, thereby reducing the cure time, increasing the output capability, and reducing cost. Conductive particles or short fibers can be dispersed throughout the resin system or composite fiber layers in pre-impregnated or RTM-processed composite material. By disposing conductive particles or short fibers in a resin as part of the curing process, heat generated during the curing process can dissipate more quickly from any type of composite, especially thick composites. Conductive additive examples include multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), graphene/graphite powder, buckyballs, short fibrous particulate, nano-clays, nano-particles, and other suitable materials.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 28, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Thomas S. Chiang, Jared M. Paulson
  • Patent number: 11629600
    Abstract: An airfoil member having a root end, a tip end, a leading edge, and a trailing edge, the airfoil member including an upper skin; a lower skin; and a support network having a plurality of interconnected support members in a lattice arrangement and/or a reticulated arrangement, the support network being configured to provide tailored characteristics of the airfoil member. Also provided are methods and systems for repairing an airfoil member.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: April 18, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Jeffrey Nissen, Jared M. Paulson, Thomas S. Chiang
  • Publication number: 20200269556
    Abstract: A thermally conductive curing process adds conductive additives to create pathways for dissipating heat during a curing process, thereby reducing the cure time, increasing the output capability, and reducing cost. Conductive particles or short fibers can be dispersed throughout the resin system or composite fiber layers in pre-impregnated or RTM-processed composite material. By disposing conductive particles or short fibers in a resin as part of the curing process, heat generated during the curing process can dissipate more quickly from any type of composite, especially thick composites. Conductive additive examples include multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), graphene/graphite powder, buckyballs, short fibrous particulate, nano-clays, nano-particles, and other suitable materials.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Thomas S. Chiang, Jared M. Paulson
  • Patent number: 10710732
    Abstract: There is provided an ice protection system for a rotary aircraft, including a rotor blade susceptible to an ice buildup having an inboard portion and an outboard portion, the length of the inboard portion and the length of the outboard portion define a total length of the rotor blade; a first deicing system coupled to the inboard portion of the rotor blade, the first deicing system including a plurality of spanwise zones; and a second deicing system coupled to the outboard portion of the rotor blade, the second deicing system including a plurality of chordwise zones. In one aspect, there is provided a deicing system for a rotary aircraft. In another aspect, there is a method to de-ice a rotor blade of an aircraft.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: July 14, 2020
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Roger J. Aubert, Jared M. Paulson
  • Publication number: 20200217206
    Abstract: An airfoil member having a root end, a tip end, a leading edge, and a trailing edge, the airfoil member including an upper skin; a lower skin; and a support network having a plurality of interconnected support members in a lattice arrangement and/or a reticulated arrangement, the support network being configured to provide tailored characteristics of the airfoil member. Also provided are methods and systems for repairing an airfoil member.
    Type: Application
    Filed: March 18, 2020
    Publication date: July 9, 2020
    Applicant: Bell Textron Inc.
    Inventors: Jeffrey Nissen, Jared M. Paulson, Thomas S. Chiang
  • Patent number: 10633976
    Abstract: In a first aspect, there is a method of making a rotor blade, including designing at least one of an upper skin, a lower skin, a support network, and components therefor; and forming at least one of the upper skin, the lower skin, a support network, and components therefor using an additive manufacturing process. In a second aspect, there is an airfoil member having a root end, a tip end, a leading edge, and a trailing edge, the airfoil member including an upper skin; a lower skin; and a support network having a plurality of interconnected support members in a lattice arrangement and/or a reticulated arrangement, the support network being configured to provide tailored characteristics of the airfoil member. Also provided are methods and systems for repairing an airfoil member.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: April 28, 2020
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Jeffrey Nissen, Jared M. Paulson, Thomas S. Chiang
  • Patent number: 10589841
    Abstract: In one aspect, a spinner fairing includes a base configured to be fixed relative to a hub system; a movable spinner assembly movable relative to the base; the movable spinner assembly comprising a first movable member and a second movable member. Each first and second movable member being selectively configurable between a closed position and a contracted position, in which the movable spinner assembly has a decreased shape and/or volume. In another embodiment, a spinner fairing can include at least one static member and a moveable member. In still another embodiment, a rotor head fairing assembly includes an upper housing and a lower housing coupled to a hub system; the upper housing including an upper movable member; the lower housing comprising a lower movable member. In yet another embodiment, a rotor head fairing includes at least one moveable upper housing and lower housing.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: March 17, 2020
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Jared M. Paulson, Tyler W. Baldwin
  • Publication number: 20190084682
    Abstract: There is provided an ice protection system for a rotary aircraft, including a rotor blade susceptible to an ice buildup having an inboard portion and an outboard portion, the length of the inboard portion and the length of the outboard portion define a total length of the rotor blade; a first deicing system coupled to the inboard portion of the rotor blade, the first deicing system including a plurality of spanwise zones; and a second deicing system coupled to the outboard portion of the rotor blade, the second deicing system including a plurality of chordwise zones. In one aspect, there is provided a deicing system for a rotary aircraft. In another aspect, there is a method to de-ice a rotor blade of an aircraft.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Roger J. Aubert, Jared M. Paulson
  • Publication number: 20190032491
    Abstract: In a first aspect, there is a method of making a rotor blade, including designing at least one of an upper skin, a lower skin, a support network, and components therefor; and forming at least one of the upper skin, the lower skin, a support network, and components therefor using an additive manufacturing process. In a second aspect, there is an airfoil member having a root end, a tip end, a leading edge, and a trailing edge, the airfoil member including an upper skin; a lower skin; and a support network having a plurality of interconnected support members in a lattice arrangement and/or a reticulated arrangement, the support network being configured to provide tailored characteristics of the airfoil member. Also provided are methods and systems for repairing an airfoil member.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 31, 2019
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Jeffrey Nissen, Jared M. Paulson, Thomas S. Chiang
  • Publication number: 20180334240
    Abstract: In one aspect, a spinner fairing includes a base configured to be fixed relative to a hub system; a movable spinner assembly movable relative to the base; the movable spinner assembly comprising a first movable member and a second movable member. Each first and second movable member being selectively configurable between a closed position and a contracted position, in which the movable spinner assembly has a decreased shape and/or volume. In another embodiment, a spinner fairing can include at least one static member and a moveable member. In still another embodiment, a rotor head fairing assembly includes an upper housing and a lower housing coupled to a hub system; the upper housing including an upper movable member; the lower housing comprising a lower movable member. In yet another embodiment, a rotor head fairing includes at least one moveable upper housing and lower housing.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 22, 2018
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Jared M. Paulson, Tyler W. Baldwin
  • Publication number: 20180115127
    Abstract: An electrical interconnect including an electrically conductive male interlock having a substantially flat base portion and a longitudinally extending locking member, and an electrically conductive female interlock having a first retention groove in a support member, the first retention groove for receiving and retaining the locking member on the support member. At least a portion of the locking member is disposed on a surface of the female interlock and slidably received in the first retention groove to form a first locked position so as to enable electrical conduction.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 26, 2018
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Jared M. Paulson, Robert A. Self