Patents by Inventor Jarich Willem Spliethoff

Jarich Willem Spliethoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065773
    Abstract: The present invention relates to guidance during a medical intervention. In order to provide an improved navigation support with a facilitated setup, a system (10) for navigation support is provided. An image data input (12) receives a plurality of acquired 2D X-ray images of a subject's body from different angles. A set of markers, which are visible in X-ray images and which are detectable by a navigation system, is assigned to the subject. A marker detecting arrangement (16) is provided that detects a current spatial location of the markers assigned to the subject. A data processor (14) reconstructs a 3D volume of the subject based on the plurality of 2D X-ray images. At least a part of the markers is arranged outside the volume covered by the reconstructed 3D volume of the subject, while the markers are visible in the 2D X-ray images.
    Type: Application
    Filed: December 28, 2021
    Publication date: February 29, 2024
    Inventors: RONALDUS FREDERIK JOHANNES HOLTHUIZEN, ROBERT JOHANNES FREDERIK HOMAN, JARICH WILLEM SPLIETHOFF, BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, PETER GEORGE VAN DE HAAR, JOHANNEKE GERRIGJE GROEN, JAN RONGEN, EDWARD VUURBERG, JOHAN JULIANA DRIES, CHRISTIAN REICH, KESHAV SIMHADRI
  • Publication number: 20230363645
    Abstract: The invention provides a system for investigating a tissue of a subject by way of diffuse reflectance spectroscopy, the tissue including a fluorescent agent adapted to absorb light in a first wavelength range and emit light in a second wavelength range, different to the first. The system includes a cannula having a distal end to be positioned adjacent the tissue and an internal cavity for providing a suction force to the tissue. The system further includes a light source adapted to generate light at the first wavelength range and a fiber optic element to be positioned adjacent the tissue. The fiber optic element is adapted to receive a light signal from the fluorescent agent, the light signal comprising light in the first and second wavelength ranges. The system further includes a processing system adapted to determine a concentration of the fluorescent agent in the tissue based on the light signal.
    Type: Application
    Filed: September 22, 2021
    Publication date: November 16, 2023
    Inventors: BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, RAMI NACHABÉ, JARICH WILLEM SPLIETHOFF, DRAZENKO BABIC
  • Publication number: 20230240758
    Abstract: The invention relates to a system (8) for assisting a user in placing a penetrating device in tissue like a pedicle screw (7) in a vertebra’s pedicle. The system generates a virtual view (20) from a penetrating device tip perspective within the tissue in the direction of a path (21) through a model of the tissue. The virtual view is generated based on tracking information indicating a pose of the penetrating device, the model and the path, wherein the virtual view is configured such that it indicates a direction in which the user should move the penetrating device while placing it in the tissue. For instance, it can show a virtual tunnel (801) which is arranged along the path. If a user like a surgeon is provided with such a virtual view, the user can position the penetrating device along the path with a significantly increased accuracy.
    Type: Application
    Filed: June 29, 2021
    Publication date: August 3, 2023
    Inventors: JARICH WILLEM SPLIETHOFF, BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, DRAZENKO BABIC, JOHANNEKE GERRIGJE GROEN, CHRISTIAN REICH, RONALDUS FREDERIK JOHANNES HOLTHUIZEN, ROBERT JOHANNES FREDERIK HOMAN
  • Publication number: 20230134673
    Abstract: An orthopedic pin is for optically analyzing a bone region. An optical fiber arrangement extends within an elongate shaft from a distal end to a proximal end. There is a coupling at an intermediate position along the shaft, and the optical fiber arrangement comprises a first portion on one side of the coupling and a second portion on the other side of the coupling. The coupling allows relative rotation between portions of the shaft at opposite sides of the coupling, while maintaining optical coupling between the first and second portions of the optical fiber.
    Type: Application
    Filed: April 19, 2021
    Publication date: May 4, 2023
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Jarich Willem SPLIETHOFF, Bernardus Hendrikus Wilhelmus HENDRIKS, Manfred MÜLLER, Gerhardus Wilhelmus LUCASSEN
  • Patent number: 11571180
    Abstract: A system may generally comprise a tracking device, an ultrasound device and a processing unit. A position and orientation of the ultrasound device may be traceable by the tracking device. The processing unit may be configured (i) to receive 3D information of a region of interest in relation to a marker, with both the region of interest and the marker being located within a body, (ii) to determine the position of the marker relative to the ultrasound device based on an ultrasound image of the body including the marker, and (iii) to determine the position and orientation of the ultrasound device relative to the tracking device. The system may further comprise a visualization device and the processing unit may further be configured to generate a visualization of the region of interest in relation to an outer surface of the body.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 7, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Drazenko Babic, Jarich Willem Spliethoff, Torre Michelle Bydlon, Grzegorz Andrzej Toporek, Aleksandra Popovic, Christian Reich
  • Publication number: 20220280033
    Abstract: An orthopedic pin (100) for optically analyzing a bone region (110) includes an elongate shaft (101) and at least one optical fiber (105) The elongate shaft has a circular outer cross section with a first diameter (D1), a distal end (102) for insertion into bone, a proximal end (103), and an optical connector portion (104) disposed towards the proximal end (103). The at least one optical fiber (105) extends within the elongate shaft (101) between the optical connector portion (104), and the distal end (102) for transmitting optical radiation between the optical connector portion (104) and the bone region (110) when the distal end (102) is inserted into the bone region (110). The optical connector portion (104) comprises a reduced-diameter portion (106). The reduced-diameter portion (106) extends along at least a portion of the elongate shaft (101), and has an outer cross section comprising a width (Drd) perpendicularly with respect to the elongate shaft (101).
    Type: Application
    Filed: August 28, 2020
    Publication date: September 8, 2022
    Inventors: Bernardus Hendrikus Wilhelmus HENDRIKS, Drazenko BABIC, Jarich Willem SPLIETHOFF, Gerhardus Wilhelmus LUCASSEN, Joanneke Gerrigje GROEN, Christian REICH, Ronaldus Frederik Johannes HOLTHUIZEN, Robert Johannes Frederik HOMAN
  • Patent number: 11406367
    Abstract: A biopsy device is provided comprising a tubular member, a hollow shaft and an elongated fiber body. The hollow shaft may have a distal end and a shaft, wherein a laterally (sidewardly) facing notch is formed in the distal portion of the shaft. The elongated fiber body may include at least one optical fiber, preferably at least two optical fibers, with a distal end. The tubular member is movable relative to the shaft, between a first position in which the notch is covered by the tubular member, and a second position in which the notch is not covered by the tubular member. The fiber body is movable within the shaft, between a first position in which the distal end of the optical fiber is located at the distal end of the shaft with the elongated fiber body extending through the notch, and a second position in which the distal end of the at least one optical fiber is located proximally to the notch.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 9, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Waltherus Cornelis Jozef Bierhoff, Christian Reich, Martinus Bernardus Van Der Mark, Bernardus Hendrikus Wilhelmus Hendriks, Anja Van De Stolpe, Stephan Voss, Axel Winkel, Marjolein Van Der Voort, Vishnu Vardhan Pully, Gerhardus Wilhelmus Lucassen, Susanne Dorien Van Den Berg-Dams, Jarich Willem Spliethoff
  • Publication number: 20210251535
    Abstract: A system SY for determining a tissue type TY of a tissue region TR is provided in which the distal ends OFDE1 . . . n of at least three optical fibers define a plurality of intersecting optical paths IOP1 . . . k within the tissue region TR. A tissue signal Q1 . . . k indicative of a tissue type TY for the respective optical path IOP1 . . . k is generated from said spectral measurement data SMD corresponding to each of the plurality of intersecting optical paths IOP1 . . . k. Each tissue signal Q1 . . . k is compared with a reference threshold QRT for the tissue type, and with an average of the tissue signals QMA. At least a portion of the tissue region is identified as the tissue type TY if i) every tissue signal Q1 . . . k in the tissue region TR indicates that its corresponding tissue is not the tissue type TY in the comparison with the N reference threshold QRT and ii) at least one of the tissue signals Q1 . . . k in the tissue region TR lies between the average QMA of the tissue signals Q1 . . .
    Type: Application
    Filed: April 22, 2019
    Publication date: August 19, 2021
    Inventors: BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, GERHARDUS WILHELMUS LUCASSEN, KLAAS CORNELIS JAN WIJBRANS, JARICH WILLEM SPLIETHOFF, NIJS CORNELIS VAN DER VAART
  • Publication number: 20210052329
    Abstract: A system is suggested comprises a main tracking device and a processing unit. The main tracking device includes a plurality of light sources and a plurality of light detectors. On the basis of light pulses, the main tracking device is configured to determine a current 3D position of a plurality of objects in a room. The processing unit is configured to process image information of each of the objects together with the position information so as to generate a visualization of the image information of the objects in spatial relation to each other.
    Type: Application
    Filed: March 27, 2019
    Publication date: February 25, 2021
    Inventors: RONALDUS FREDERIK JOHANNES HOLTHUIZEN, JOHAN JULIANA DRIES, ROBERT JOHANNES FREDERIK HOMAN, MARTIJN VAN DE GIESSEN, EDWARD VUURBERG, BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, JARICH WILLEM SPLIETHOFF
  • Publication number: 20210015455
    Abstract: The invention relates to an ultrasound device (1) insertable into a patient body (2) for in-situ ultrasound imaging. The device (1) comprises an ultrasound transducer device (4) having an imaging surface (5) for contacting tissue to be imaged and being attached to a support element (21). The support element (21) comprises a gripping member (21, 23) having a gripping surface configured for being at least temporarily affixed to the tissue, the gripping member (21) at least partly surrounding the imaging surface (5) of the ultrasound transducer device (4) and the gripping surface (23) being made from a deformable material. By means of the gripping member (21, 23), the device (1) can automatically be held at an imaging position. Further, the device (1) does not require an elongated shaft for manipulating the ultrasound module, which could interference with other surgical devices.
    Type: Application
    Filed: December 18, 2018
    Publication date: January 21, 2021
    Inventors: JARICH WILLEM SPLIETHOFF, BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, GRZEGORZ ANDRZEJ TOPOREK, MARCIN ARKADIUSZ BALICKI, CHRISTIAN REICH
  • Publication number: 20200015781
    Abstract: A system may generally comprise a tracking device, an ultrasound device and a processing unit. A position and orientation of the ultrasound device may be traceable by the tracking device. The processing unit may be configured (i) to receive 3D information of a region of interest in relation to a marker, with both the region of interest and the marker being located within a body, (ii) to determine the position of the marker relative to the ultrasound device based on an ultrasound image of the body including the marker, and (iii) to determine the position and orientation of the ultrasound device relative to the tracking device. The system may further comprise a visualization device and the processing unit may further be configured to generate a visualization of the region of interest in relation to an outer surface of the body.
    Type: Application
    Filed: December 18, 2017
    Publication date: January 16, 2020
    Inventors: BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, DRAZENKO BABIC, JARICH WILLEM SPLIETHOFF, TORRE MICHELLE BYDLON, GRZEGORZ ANDRZEJ TOPOREK, ALEKSANDRA POPOVIC, CHRISTIAN REICH
  • Patent number: 10143450
    Abstract: A biopsy device includes a tubular member, a hollow shaft and an elongated fiber body having at least one optical fiber. The hollow shaft has a laterally (sidewardly) facing notch in its distal portion. The tubular member is movable relative to the shaft, between a first position in which the notch is covered by the tubular member, and a second position in which the notch is not covered by the tubular member. The shaft is movable between a first position in which the distal end of the optical fiber is located at the distal end of the shaft with the elongated fiber body extending through the notch, and a second position in which the distal end of the at least one optical fiber is located proximally to the notch.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: December 4, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Waltherus Cornelis Jozef Bierhoff, Christian Reich, Martinus Bernardus Van Der Mark, Bernardus Hendrikus Wilhelmus Hendriks, Anja Van De Stolpe, Stephan Voss, Axel Winkel, Marjolen Van Der Voort, Vishnu Vardhan Pully, Gerhardus Wilhelmus Lucassen, Susanne Dorien Van Den Berg-Dams, Jarich Willem Spliethoff
  • Publication number: 20180303468
    Abstract: A biopsy device is provided comprising a tubular member, a hollow shaft and an elongated fiber body. The hollow shaft may have a distal end and a shaft, wherein a laterally (sidewardly) facing notch is formed in the distal portion of the shaft. The elongated fiber body may include at least one optical fiber, preferably at least two optical fibers, with a distal end. The tubular member is movable relative to the shaft, between a first position in which the notch is covered by the tubular member, and a second position in which the notch is not covered by the tubular member. The fiber body is movable within the shaft, between a first position in which the distal end of the optical fiber is located at the distal end of the shaft with the elongated fiber body extending through the notch, and a second position in which the distal end of the at least one optical fiber is located proximally to the notch.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 25, 2018
    Inventors: Waltherus Cornelis Jozef Bierhoff, Christian Reich, Martinus Bernardus Van Der Mark, Bernardus Hendrikus Wilhelmus Hendriks, Anja Van De Stolpe, Stephan Voss, Axel Winkel, Marjolen Van Der Voort, Vishnu Vardhan Pully, Gerhardus Wilhelmus Lucassen, Susanne Dorien Van Den Berg-Dams, Jarich Willem Spliethoff
  • Publication number: 20150265256
    Abstract: A biopsy device is provided comprising a tubular member, a hollow shaft and an elongated fiber body. The hollow shaft may have a distal end and a shaft, wherein a laterally (sidewardly) facing notch is formed in the distal portion of the shaft. The elongated fiber body may include at least one optical fiber, preferably at least two optical fibers, with a distal end. The tubular member is movable relative to the shaft, between a first position in which the notch is covered by the tubular member, and a second position in which the notch is not covered by the tubular member. The fiber body is movable within the shaft, between a first position in which the distal end of the optical fiber is located at the distal end of the shaft with the elongated fiber body extending through the notch, and a second position in which the distal end of the at least one optical fiber is located proximally to the notch.
    Type: Application
    Filed: October 28, 2013
    Publication date: September 24, 2015
    Inventors: Waltherus Cornelis Jozef Bierhoff, Christian Reich, Martinus Bernardus Van Der Mark, Bernardus Hendrikus Wilhelmus Hendriks, Anja Van De Stolpe, Stephan Voss, Axel Winkel, Marjolen Van Der Voort, Vishnu Vardhan Pully, Gerhardus Wilhelmus Lucassen, Susanne Dorien Van Den Berg-Dams, Jarich Willem Spliethoff
  • Publication number: 20140378797
    Abstract: The present invention relates to an apparatus 100 and, a method and a computer program for determining a first parameter indicative of a concentration of lycopene. In particular, the invention relates to an apparatus 100 comprising a spectrometer 02, which spectrometer comprises a light source 104 and a detector 106, 108 arranged to measure an optical spectrum via an interventional device 112. This enables determination of a first parameter being indicative of a lycopene concentration. Lycopene concentration may serve as a discriminative feature for different tissue types, such as the prostate organ and associated structures. The apparatus may in a specific embodiment be arranged to determine a second parameter indicative of a tissue type based on a concentration of lycopene. According to a specific embodiment, the apparatus relies on Diffuse Reflectance Spectroscopy (DRS).
    Type: Application
    Filed: January 22, 2013
    Publication date: December 25, 2014
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Jarich Willem Spliethoff, Rami Nachabe, Theodoor Jacques Marie Ruers, Gerhardus Wilhelmus Lucassen, Jeroen Jan Lambertus Horikx, Manfred Mueller, Marjolein Van Der Voort