Patents by Inventor Jarmo Maula
Jarmo Maula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10590536Abstract: The present invention relates to an apparatus, method, a reaction chamber and a use of a reaction chamber for processing a surface of a substrate by subjecting the surface of a substrate to successive surface reactions of at least a first precursor and a second precursor. The apparatus comprises a vacuum chamber; a detachable reaction chamber arranged to be installed inside the vacuum chamber, and inside which the substrate is positioned during processing and a precursor system for supplying the at least first and second precursors into the action chamber and for discharging the at least first and second precursors from the reaction chamber. According to the present invention the reaction chamber is provided as a gastight vessel.Type: GrantFiled: November 27, 2018Date of Patent: March 17, 2020Assignee: BENEQ OYInventors: Mikko Soderlund, Pekka Soininen, Jarmo Maula
-
Publication number: 20190203356Abstract: The invention relates to an arrangement for processing a substrate in a reaction chamber of a gas deposition apparatus by exposing the substrate to alternate, saturated surface reactions of starting materials, the arrangement comprising loading means for loading the substrate into the reaction chamber on a substrate support. In accordance with the invention, the substrate is arranged for being attached in a detachable manner with an adhesive to the substrate carrier.Type: ApplicationFiled: March 11, 2019Publication date: July 4, 2019Inventor: Jarmo MAULA
-
Publication number: 20190127850Abstract: The present invention relates to an apparatus, method, a reaction chamber and a use of a reaction chamber for processing a surface of a substrate by subjecting the surface of a substrate to successive surface reactions of at least a first precursor and a second precursor. The apparatus comprises a vacuum chamber; a detachable reaction chamber arranged to be installed inside the vacuum chamber, and inside which the substrate is positioned during processing and a precursor system for supplying the at least first and second precursors into the action chamber and for discharging the at least first and second precursors from the reaction chamber. According to the present invention the reaction chamber is provided as a gastight vessel.Type: ApplicationFiled: November 27, 2018Publication date: May 2, 2019Inventors: Mikko Soderlund, Pekka Soininen, Jarmo Maula
-
Patent number: 10167551Abstract: The present invention relates to an apparatus, method, a reaction chamber and a use of a reaction chamber for processing a surface of a substrate by subjecting the surface of a substrate to successive surface reactions of at least a first precursor and a second precursor. The apparatus includes a vacuum chamber; a detachable reaction chamber arranged to be installed inside the vacuum chamber, and inside which the substrate is positioned during processing and a precursor system for supplying the at least first and second precursors into the action chamber and for discharging the at least first and second precursors from the reaction chamber. According to the present invention the reaction chamber is provided as a gastight vessel.Type: GrantFiled: January 24, 2012Date of Patent: January 1, 2019Assignee: BENEQ OYInventors: Mikko Soderlund, Pekka Soininen, Jarmo Maula
-
Patent number: 9892814Abstract: A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).Type: GrantFiled: February 10, 2016Date of Patent: February 13, 2018Assignee: Beneq OyInventor: Jarmo Maula
-
Publication number: 20170268106Abstract: The invention relates to an arrangement for processing a substrate in a reaction chamber of a gas deposition apparatus by exposing the substrate to alternate, saturated surface reactions of starting materials, the arrangement comprising loading means for loading the substrate into the reaction chamber on a substrate support. In accordance with the invention, the substrate is arranged for being attached in a detachable manner with an adhesive to the substrate carrier.Type: ApplicationFiled: June 5, 2017Publication date: September 21, 2017Applicant: BENEQ OYInventor: Jarmo MAULA
-
Publication number: 20160172070Abstract: A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).Type: ApplicationFiled: February 10, 2016Publication date: June 16, 2016Inventor: Jarmo MAULA
-
Patent number: 9290840Abstract: A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).Type: GrantFiled: November 2, 2010Date of Patent: March 22, 2016Assignee: Beneq OyInventor: Jarmo Maula
-
Patent number: 8945676Abstract: The invention relates to a method and an apparatus for coating one or more objects (1) by exposing an object (1) to alternately repeating surface reactions of two or more gaseous precursors. The apparatus comprises a reaction chamber (2, 40), means for forming at least one distinct precursor region inside the reaction chamber, and means for causing translational, essentially mechanically unsupported and unsuspended, motion of an object (1) inside the reaction chamber, relative to the reaction chamber, for bringing the surface of the object (1) into contact with a gaseous precursor, the means for causing the translational motion comprising means for moving the object (1) essentially through the at least one distinct precursor region inside the reaction chamber.Type: GrantFiled: March 25, 2010Date of Patent: February 3, 2015Assignee: Beneq OyInventor: Jarmo Maula
-
Publication number: 20130269608Abstract: The present invention relates to an apparatus, method, a reaction chamber and a use of a reaction chamber for processing a surface of a substrate by subjecting the surface of a substrate to successive surface reactions of at least a first precursor and a second precursor. The apparatus includes a vacuum chamber; a detachable reaction chamber arranged to be installed inside the vacuum chamber, and inside which the substrate is positioned during processing and a precursor system for supplying the at least first and second precursors into the action chamber and for discharging the at least first and second precursors from the reaction chamber. According to the present invention the reaction chamber is provided as a gastight vessel.Type: ApplicationFiled: January 24, 2012Publication date: October 17, 2013Applicant: BENEQ OYInventors: Mikko Soderlund, Pekka Soininen, Jarmo Maula
-
Publication number: 20130130044Abstract: A decorative coating and a method for forming a decorative coating on a gemstone to change the natural visual appearance of the gemstone. The decorative coating comprises an optically absorbing film. Depositing the absorbing film on the substrate comprises the alternating steps of introducing a first precursor to the reaction space such that at least a portion of the first precursor gets adsorbed onto the surface of the substrate, and subsequently purging the reaction space, and introducing a second precursor to the reaction space such that at least a portion of the second precursor reacts with the portion of the first precursor adsorbed onto the surface of the substrate to form a conformal absorbing film on the substrate comprising the gemstone, and subsequently purging the reaction space. The material of the absorbing film is selected from the group of oxides, carbides, noble metals or a mixture thereof.Type: ApplicationFiled: November 19, 2010Publication date: May 23, 2013Applicant: Beneq OyInventors: Jarmo Maula, Matti Putkonen
-
Patent number: 8367561Abstract: The present invention relates to a method for enhancing uniformity of metal oxide coatings formed by Atomic Layer Deposition (ALD) or ALD-type processes. Layers are formed using alternating pulses of metal halide and oxygen-containing precursors, preferably water, and purging when necessary. An introduction of modificator pulses following the pulses of the oxygen-containing precursor affects positively on layer uniformity, which commonly exhibits gradients, particularly in applications with closely arranged substrates. In particular, improvement in layer thickness uniformity is obtained. According to the invention, alcohols having one to three carbon atoms can be used as the modificator.Type: GrantFiled: July 2, 2008Date of Patent: February 5, 2013Assignee: Beneq OyInventors: Jarmo Maula, Kari Harkonen
-
Publication number: 20120218638Abstract: A decorative coating and a method for forming a decorative coating on a substrate (2). The decorative coating comprises an absorbing film (1) to attenuate the transmission of visible light through the coating. The method comprises the steps of bringing the substrate (2) into a reaction space, and depositing the absorbing film (1) on the substrate (2). Depositing the absorbing film (1) on the substrate comprises the steps of forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space, and treating the deposition surface with an organometallic chemical comprising first metal and subsequently purging the reaction space. The steps of forming the preliminary deposit and treating the deposition surface are alternately repeated to increase absorption of the absorbing film (1).Type: ApplicationFiled: November 2, 2010Publication date: August 30, 2012Applicant: BENEQ OYInventors: Jarmo Maula, Tapani Alasaarela
-
Publication number: 20120217454Abstract: A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).Type: ApplicationFiled: November 2, 2010Publication date: August 30, 2012Applicant: Beneq OyInventor: Jarmo Maula
-
Publication number: 20120177903Abstract: A multilayer coating and a method for fabricating a multilayer coating on a substrate (3). The coating is arranged to minimize diffusion of atoms through the coating, the method comprising the steps of introducing a substrate (3) to a reaction space, depositing a layer of first material (1) on the substrate (3), and depositing a layer of second material (2) on the layer of first material (1). Depositing the layer of first material (1) and the layer of second material (2) comprises alternately introducing precursors into the reaction space and subsequently purging the reaction space after each introduction of a precursor. The first material being selected from the group of titanium oxide and aluminum oxide, the second material being the other from the group of titanium oxide and aluminum oxide. An interfacial region is formed in between titanium oxide and aluminum oxide.a.Type: ApplicationFiled: September 13, 2010Publication date: July 12, 2012Applicant: Beneq OyInventors: Sami Sneck, Nora Isomäki, Jarmo Maula, Olli Jylhä, Matti Putkonen, Runar Törnqvist, Mikko Söderlund
-
Publication number: 20120120514Abstract: A structure comprising at least one reflecting thin-film on a surface of a macroscopic object is disclosed. The surface of the macroscopic object, without the at least one thin-film, reflects less than 50% of incident light in the visible wavelength band and is opaque, and reflection of visible light from the surface of the macroscopic object, with the at least one thin-film on the surface of the macroscopic object, is essentially spectrally uniform and flat over available viewing angles. The at least one thin-film is dielectric and essentially transparent to visible light, and the at least one thin-film is fabricated by exposing the surface of the macroscopic object to alternately repeating, essentially self-limiting, surface reactions of two or more precursors, for increasing the reflectance of specularly reflected visible light in the visible wavelength band from the surface.Type: ApplicationFiled: April 7, 2010Publication date: May 17, 2012Applicant: Beneq OyInventor: Jarmo Maula
-
Publication number: 20120055407Abstract: The invention relates to an arrangement for processing a substrate in a reaction chamber of a gas deposition apparatus by exposing the substrate to alternate, saturated surface reactions of starting materials, the arrangement comprising loading means for loading the substrate into the reaction chamber on a substrate support. In accordance with the invention, the substrate is arranged for being attached in a detachable manner with an adhesive to the substrate carrier.Type: ApplicationFiled: May 21, 2010Publication date: March 8, 2012Applicant: BENEQ OYInventor: Jarmo Maula
-
Publication number: 20120015106Abstract: The invention relates to a method and an apparatus for coating one or more objects (1) by exposing an object (1) to alternately repeating surface reactions of two or more gaseous precursors. The apparatus comprises a reaction chamber (2, 40), means for forming at least one distinct precursor region inside the reaction chamber, and means for causing translational, essentially mechanically unsupported and unsuspended, motion of an object (1) inside the reaction chamber, relative to the reaction chamber, for bringing the surface of the object (1) into contact with a gaseous precursor, the means for causing the translational motion comprising means for moving the object (1) essentially through the at least one distinct precursor region inside the reaction chamber.Type: ApplicationFiled: March 25, 2010Publication date: January 19, 2012Applicant: Beneq OyInventor: Jarmo Maula
-
Publication number: 20110265720Abstract: A reactor is provided for a gas deposition method, in which method the surface of a substrate is subjected to alternate starting material surface reactions. The reactor includes a first chamber, a second chamber mounted inside the first chamber, and heating means for heating the first chamber. The reactor also includes one or more heat transfer elements for equalising temperature differences inside the first chamber.Type: ApplicationFiled: February 11, 2010Publication date: November 3, 2011Applicant: BENEQ OYInventors: Jarmo Maula, Hannu Leskinen, Kari Harkonen
-
Patent number: 7901736Abstract: The invention relates to a multilayer material deposited by ALD. A multi-layer structure of a high refractive index material is deposited on a substrate using ALD at a temperature below about 450° C. Advantageous results are obtained when a high refractive index material A is coated with another material B after a certain thickness of material A has been achieved. Thus, the B barrier layer stops the tendency for material A to crystallize. The amorphous structure gives rise to less optical loss. Further, the different stress nature of materials A and B may be utilized to achieve a final optical material with minimal stress. The thickness of each material B layer is less than that of the adjacent A layer(s). The total effective refractive index of the high refractive index material A+B being shall be greater than 2.20 at a wavelength of 600 nm. Titanium oxide and aluminium oxide are preferred A and B materials. The structure is useful for optical coatings.Type: GrantFiled: December 19, 2005Date of Patent: March 8, 2011Assignee: Planar Systems OyInventors: Jarmo Maula, Kari Härkönen, Anguel Nikolov