Patents by Inventor Jaroslaw W. Winniczek

Jaroslaw W. Winniczek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865472
    Abstract: A method of etching features into a silicon layer with a steady-state gas flow is provided. An etch gas comprising an oxygen containing gas and a fluorine containing gas is provided. A plasma is provided from the etch gas. Then, the flow of the etch gas is stopped.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: January 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Robert Chebi, Frank Lin, Jaroslaw W. Winniczek, Wan-Lin Chen, Erin Moore, Lily Zheng, Stephan Lassig, Jeff Bogart, Camelia Rusu
  • Publication number: 20160233102
    Abstract: A method of etching features into a silicon layer with a steady-state gas flow is provided. An etch gas comprising an oxygen containing gas and a fluorine containing gas is provided. A plasma is provided from the etch gas. Then, the flow of the etch gas is stopped.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Robert CHEBI, Frank LIN, Jaroslaw W. WINNICZEK, Wan-Lin CHEN, Erin MOORE, Lily ZHENG, Stephan LASSIG, Jeff BOGART, Camelia RUSU
  • Patent number: 9330926
    Abstract: A method of etching features into a silicon layer with a steady-state gas flow is provided. An etch gas comprising an oxygen containing gas and a fluorine containing gas is provided. A plasma is provided from the etch gas. Then, the flow of the etch gas is stopped.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 3, 2016
    Assignee: Lam Research Corporation
    Inventors: Robert Chebi, Frank Lin, Jaroslaw W. Winniczek, Wan-Lin Chen, Erin McDonnell, Lily Zheng, Stephan Lassig, Jeff Bogart, Camelia Rusu
  • Patent number: 9018098
    Abstract: A silicon layer is etched through a patterned mask formed thereon using an etch chamber. A fluorine (F) containing etch gas and a silicon (Si) containing chemical vapor deposition gas are provided in the etch chamber. The fluorine (F) containing etch gas is used to etch features into the silicon layer, and the silicon (Si) containing chemical vapor deposition gas is used to form a silicon-containing deposition layer on sidewalls of the features. A plasma is generated from the etch gas and the chemical vapor deposition gas, and a bias voltage is provided. Features are etched into the silicon layer using the plasma, and a silicon-containing passivation layer is deposited on the sidewalls of the features which are being etched. Silicon in the passivation layer primarily comes from the chemical vapor deposition gas. The etch gas and the chemical vapor deposition gas are then stopped.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 28, 2015
    Assignee: Lam Research Corporation
    Inventors: Jaroslaw W. Winniczek, Robert P. Chebi
  • Patent number: 8871105
    Abstract: A method is provided for etching silicon in a plasma processing chamber, having an operating pressure and an operating bias. The method includes: performing a first vertical etch in the silicon to create a hole having a first depth and a sidewall; performing a deposition of a protective layer on the sidewall; performing a second vertical etch to deepen the hole to a second depth and to create a second sidewall, the second sidewall including a first trough, a second trough and a peak, the first trough corresponding to the first sidewall, the second trough corresponding to the second sidewall, the peak being disposed between the first trough and the second trough; and performing a third etch to reduce the peak.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 28, 2014
    Assignee: Lam Research Corporation
    Inventors: Jaroslaw W. Winniczek, Frank Y. Lin, Alan J. Miller, Qing Xu, Seongjun Heo, Jin Hwan Ham, Sang Joon Yoon, Camelia Rusu
  • Publication number: 20140261803
    Abstract: A gas chamber contains upper and lower chamber bodies forming a cavity, a heating chuck for a wafer, a remote gas source, and an exhaust unit. Gas is injected into the cavity through channels in an injector. Each channel has sections that are bent with respect to each other at a sufficient angle to substantially eliminate entering light rays entering the channel from exiting the channel without reflection. The channels have funnel-shaped nozzles at end points proximate to the chuck. The injector also has thermal expansion relief slots and small gaps between the injector and mating surfaces of the chamber and gas source. The temperature of the injector is controlled by a cooling liquid in cooling channels and electrical heaters in receptacles of the injector. The upper chamber body is funnel-shaped and curves downward at an end of the upper chamber body proximate to the chuck.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Ing-Yann Wang, Jaroslaw W. Winniczek, David J. Cooperberg, Erik A. Edelberg, Robert P. Chebi
  • Patent number: 8757178
    Abstract: A method and apparatus remove photoresist from a wafer. A process gas containing sulfur (S), oxygen (O), and hydrogen (H) is provided, and a plasma is generated from the process gas in a first chamber. A radical-rich ion-poor reaction medium is flown from the first chamber to a second chamber where the wafer is placed. The patterned photoresist layer on the wafer is removed using the reaction medium, and then the reaction medium flowing into the second chamber is stopped. Water vapor may be introduced in a solvation zone provided in a passage of the reaction medium flowing down from the plasma such that the water vapor solvates the reaction medium to form solvated clusters of species before the reaction medium reaches the wafer. The photoresist is removed using the solvated reaction medium.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Lam Research Corporation
    Inventors: Robert P. Chebi, Jaroslaw W. Winniczek
  • Patent number: 8609548
    Abstract: A method for etching features into an etch layer in a plasma processing chamber, comprising a plurality of cycles is provided. Each cycle comprises a deposition phase and an etching phase. The deposition phase comprises providing a flow of deposition gas, forming a plasma from the deposition gas in the plasma processing chamber, providing a first bias during the deposition phase to provide an anisotropic deposition, and stopping the flow of the deposition gas into the plasma processing chamber. The etching phase, comprises providing a flow of an etch gas, forming a plasma from the etch gas in the plasma processing chamber, providing a second bias during the etch phase, wherein the first bias is greater than the second bias, and stopping the flow of the etch gas into the plasma processing chamber.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Lam Research Corporation
    Inventors: Qing Xu, Camelia Rusu, Jaroslaw W. Winniczek, Frank Y. Lin, Alan J. Miller
  • Patent number: 8598037
    Abstract: A method of etching a silicon layer through a patterned mask is provided. The method uses an etch chamber in which the silicon layer is placed. The method includes (a) providing the silicon layer having the patterned mask formed thereon, (b) providing an etch gas comprising a fluorine containing gas and an oxygen and hydrogen containing gas into the etch chamber in which the silicon layer has been placed, (c) generating a plasma from the etch gas, (d) etching features into the silicon layer through the patterned mask using the plasma, and (e) stopping the etch gas. The oxygen and hydrogen containing gas contains water vapor.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: December 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Jaroslaw W. Winniczek, Robert P. Chebi
  • Publication number: 20130237062
    Abstract: A method is provided for etching silicon in a plasma processing chamber, having an operating pressure and an operating bias. The method includes: performing a first vertical etch in the silicon to create a hole having a first depth and a sidewall; performing a deposition of a protective layer on the sidewall; performing a second vertical etch to deepen the hole to a second depth and to create a second sidewall, the second sidewall including a first trough, a second trough and a peak, the first trough corresponding to the first sidewall, the second trough corresponding to the second sidewall, the peak being disposed between the first trough and the second trough; and performing a third etch to reduce the peak.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventors: Jaroslaw W. Winniczek, Frank Y. Lin, Alan J. Miller, Qing Xu, Seongjun Heo, Jin Hwan Ham, Sang Joon Yoon, Camelia Rusu
  • Publication number: 20130203259
    Abstract: A pressure control valve assembly of a plasma processing chamber in which semiconductor substrates are processed includes a housing having an inlet, an outlet and a conduit extending between the inlet and the outlet, the inlet adapted to be connected to an interior of the plasma processing chamber and the outlet adapted to be connected to a vacuum pump which maintains the plasma processing chamber at desired pressure set points during rapid alternating phases of processing a semiconductor substrate in the chamber. A drive mechanism attached to first and second valve plates effects rotation of the first and second valve plates to switch the valve plates between first and second angular orientations to change the degree of alignment of first and second open areas of the valve plates and thereby increase or decrease conductance to achieve desired pressure settings in the chamber.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: Lam Research Corporation
    Inventor: Jaroslaw W Winniczek
  • Patent number: 8425682
    Abstract: A gas chamber contains upper and lower chamber bodies forming a cavity, a heating chuck for a wafer, a remote gas source, and an exhaust unit. Gas is injected into the cavity through channels in an injector. Each channel has sections that are bent with respect to each other at a sufficient angle to substantially eliminate entering light rays entering the channel from exiting the channel without reflection. The channels have funnel-shaped nozzles at end points proximate to the chuck. The injector also has thermal expansion relief slots and small gaps between the injector and mating surfaces of the chamber and gas source. The temperature of the injector is controlled by a cooling liquid in cooling channels and electrical heaters in receptacles of the injector. The upper chamber body is funnel-shaped and curves downward at an end of the upper chamber body proximate to the chuck.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: April 23, 2013
    Assignee: Lam Research Corporation
    Inventors: Ing-Yann Wang, Jaroslaw W. Winniczek, David J. Cooperberg, Erik A. Edelberg, Robert P. Chebi
  • Publication number: 20120309194
    Abstract: A method for etching features into an etch layer in a plasma processing chamber, comprising a plurality of cycles is provided. Each cycle comprises a deposition phase and an etching phase. The deposition phase comprises providing a flow of deposition gas, forming a plasma from the deposition gas in the plasma processing chamber, providing a first bias during the deposition phase to provide an anisotropic deposition, and stopping the flow of the deposition gas into the plasma processing chamber. The etching phase, comprises providing a flow of an etch gas, forming a plasma from the etch gas in the plasma processing chamber, providing a second bias during the etch phase, wherein the first bias is greater than the second bias, and stopping the flow of the etch gas into the plasma processing chamber.
    Type: Application
    Filed: July 21, 2011
    Publication date: December 6, 2012
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Qing Xu, Camelia Rusu, Jaroslaw W. Winniczek, Frank Y. Lin, Alan J. Miller
  • Patent number: 8298336
    Abstract: A gas chamber contains upper and lower chamber bodies forming a cavity, a heating chuck for a wafer, a remote gas source, and an exhaust unit. Gas is injected into the cavity through channels in an injector. Each channel has sections that are bent with respect to each other at a sufficient angle to substantially eliminate entering light rays entering the channel from exiting the channel without reflection. The channels have funnel-shaped nozzles at end points proximate to the chuck. The injector also has thermal expansion relief slots and small gaps between the injector and mating surfaces of the chamber and gas source. The temperature of the injector is controlled by a cooling liquid in cooling channels and electrical heaters in receptacles of the injector. The upper chamber body is funnel-shaped and curves downward at an end of the upper chamber body proximate to the chuck.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: October 30, 2012
    Assignee: Lam Research Corporation
    Inventors: Ing-Yann Wang, Jaroslaw W. Winniczek, David J. Cooperberg, Erik A. Edelberg, Robert P. Chebi
  • Patent number: 8173547
    Abstract: A method and apparatus for etching a silicon layer through a patterned mask formed thereon are provided. The silicon layer is placed in an etch chamber. An etch gas comprising a fluorine containing gas and an oxygen and hydrogen containing gas is provided into the etch chamber. A plasma is generated from the etch gas and features are etched into the silicon layer using the plasma. The etch gas is then stopped. The plasma may contain OH radicals.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 8, 2012
    Assignee: Lam Research Corporation
    Inventors: Jaroslaw W. Winniczek, Robert P. Chebi
  • Publication number: 20120100720
    Abstract: A method of etching a silicon layer through a patterned mask is provided. The method uses an etch chamber in which the silicon layer is placed. The method includes (a) providing the silicon layer having the patterned mask formed thereon, (b) providing an etch gas comprising a fluorine containing gas and an oxygen and hydrogen containing gas into the etch chamber in which the silicon layer has been placed, (c) generating a plasma from the etch gas, (d) etching features into the silicon layer through the patterned mask using the plasma, and (e) stopping the etch gas. The oxygen and hydrogen containing gas contains water vapor.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 26, 2012
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Jaroslaw W. WINNICZEK, Robert P. CHEBI
  • Publication number: 20120006486
    Abstract: A method and apparatus remove photoresist from a wafer. A process gas containing sulfur (S), oxygen (O), and hydrogen (H) is provided, and a plasma is generated from the process gas in a first chamber. A radical-rich ion-poor reaction medium is flown from the first chamber to a second chamber where the wafer is placed. The patterned photoresist layer on the wafer is removed using the reaction medium, and then the reaction medium flowing into the second chamber is stopped. Water vapor may be introduced in a solvation zone provided in a passage of the reaction medium flowing down from the plasma such that the water vapor solvates the reaction medium to form solvated clusters of species before the reaction medium reaches the wafer. The photoresist is removed using the solvated reaction medium.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Robert P. CHEBI, Jaroslaw W. WINNICZEK
  • Patent number: 8043434
    Abstract: A method and apparatus remove photoresist from a wafer. A process gas containing sulfur (S), oxygen (O), and hydrogen (H) is provided, and a plasma is generated from the process gas in a first chamber. A radical-rich ion-poor reaction medium is flown from the first chamber to a second chamber where the wafer is placed. The patterned photoresist layer on the wafer is removed using the reaction medium, and then the reaction medium flowing into the second chamber is stopped. Water vapor may be introduced in a salvation zone provided in a passage of the reaction medium flowing down from the plasma such that the water vapor solvates the reaction medium to form solvated clusters of species before the reaction medium reaches the wafer. The photoresist is removed using the solvated reaction medium.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 25, 2011
    Assignee: Lam Research Corporation
    Inventors: Robert P. Chebi, Jaroslaw W. Winniczek
  • Publication number: 20100105209
    Abstract: A method and apparatus for etching a silicon layer through a patterned mask formed thereon are provided. The silicon layer is placed in an etch chamber. An etch gas comprising a fluorine containing gas and an oxygen and hydrogen containing gas is provided into the etch chamber. A plasma is generated from the etch gas and features are etched into the silicon layer using the plasma. The etch gas is then stopped. The plasma may contain OH radicals.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 29, 2010
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Jaroslaw W. Winniczek, Robert P. Chebi
  • Publication number: 20100105208
    Abstract: A silicon layer is etched through a patterned mask formed thereon using an etch chamber. A fluorine (F) containing etch gas and a silicon (Si) containing chemical vapor deposition gas are provided in the etch chamber. The fluorine (F) containing etch gas is used to etch features into the silicon layer, and the silicon (Si) containing chemical vapor deposition gas is used to form a silicon-containing deposition layer on sidewalls of the features. A plasma is generated from the etch gas and the chemical vapor deposition gas, and a bias voltage is provided. Features are etched into the silicon layer using the plasma, and a silicon-containing passivation layer is deposited on the sidewalls of the features which are being etched. Silicon in the passivation layer primarily comes from the chemical vapor deposition gas. The etch gas and the chemical vapor deposition gas are then stopped.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 29, 2010
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Jaroslaw W. Winniczek, Robert P. Chebi