Patents by Inventor Jarrod M. Snider

Jarrod M. Snider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802967
    Abstract: A sensor data fusion system for a vehicle with multiple sensors includes a first-sensor, a second-sensor, and a controller-circuit. The first-sensor is configured to output a first-frame of data and a subsequent-frame of data indicative of objects present in a first-field-of-view. The first-frame is characterized by a first-time-stamp, the subsequent-frame of data characterized by a subsequent-time-stamp different from the first-time-stamp. The second-sensor is configured to output a second-frame of data indicative of objects present in a second-field-of-view that overlaps the first-field-of-view. The second-frame is characterized by a second-time-stamp temporally located between the first-time-stamp and the subsequent-time-stamp. The controller-circuit is configured to synthesize an interpolated-frame from the first-frame and the subsequent-frame. The interpolated-frame is characterized by an interpolated-time-stamp that corresponds to the second-time-stamp.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: October 31, 2023
    Assignee: Motional AD LLC
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Patent number: 11774974
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: October 3, 2023
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Patent number: 11604474
    Abstract: A scenario aware perception system (10) suitable for use on an automated vehicle includes a traffic-scenario detector (14), an object-detection device (24), and a controller (32). The traffic-scenario detector (14) is used to detect a present-scenario (16) experienced by a host-vehicle (12). The object-detection device (24) is used to detect an object (26) proximate to the host-vehicle (12). The controller (32) is in communication with the traffic-scenario detector (14) and the object-detection device (24). The controller (32) configured to determine a preferred-algorithm (36) used to identify the object (26). The preferred-algorithm (36) is determined based on the present-scenario (16).
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 14, 2023
    Assignee: Motional AD LLC
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Publication number: 20220390957
    Abstract: A sensor data fusion system for a vehicle with multiple sensors includes a first-sensor, a second-sensor, and a controller-circuit. The first-sensor is configured to output a first-frame of data and a subsequent-frame of data indicative of objects present in a first-field-of-view. The first-frame is characterized by a first-time-stamp, the subsequent-frame of data characterized by a subsequent-time-stamp different from the first-time-stamp. The second-sensor is configured to output a second-frame of data indicative of objects present in a second-field-of-view that overlaps the first-field-of-view. The second-frame is characterized by a second-time-stamp temporally located between the first-time-stamp and the subsequent-time-stamp. The controller-circuit is configured to synthesize an interpolated-frame from the first-frame and the subsequent-frame. The interpolated-frame is characterized by an interpolated-time-stamp that corresponds to the second-time-stamp.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Patent number: 11435752
    Abstract: A sensor data fusion system for a vehicle with multiple sensors includes a first-sensor, a second-sensor, and a controller-circuit. The first-sensor is configured to output a first-frame of data and a subsequent-frame of data indicative of objects present in a first-field-of-view. The first-frame is characterized by a first-time-stamp, the subsequent-frame of data characterized by a subsequent-time-stamp different from the first-time-stamp. The second-sensor is configured to output a second-frame of data indicative of objects present in a second-field-of-view that overlaps the first-field-of-view. The second-frame is characterized by a second-time-stamp temporally located between the first-time-stamp and the subsequent-time-stamp. The controller-circuit is configured to synthesize an interpolated-frame from the first-frame and the subsequent-frame. The interpolated-frame is characterized by an interpolated-time-stamp that corresponds to the second-time-stamp.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: September 6, 2022
    Assignee: Motional AD LLC
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Publication number: 20210247772
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Patent number: 11067984
    Abstract: A driving-rule system (10) suitable to operate an automated includes a vehicle-detector (16) and a controller (20). The vehicle-detector (16) is suitable for use on a host-vehicle (12). The vehicle-detector (16) is used to detect movement of an other-vehicle (14) proximate to the host-vehicle (12). The controller (20) is in communication with the vehicle-detector (16). The controller (20) is configured to operate the host-vehicle (12) in accordance with a driving-rule (22), detect an observed-deviation (24) of the driving-rule (22) by the other-vehicle (14), and modify the driving-rule (22) based on the observed-deviation (24).
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 20, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Wenda Xu, Jarrod M. Snider, Jong Ho Lee
  • Patent number: 10990102
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 27, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Publication number: 20210116921
    Abstract: A scenario aware perception system (10) suitable for use on an automated vehicle includes a traffic-scenario detector (14), an object-detection device (24), and a controller (32). The traffic-scenario detector (14) is used to detect a present-scenario (16) experienced by a host-vehicle (12). The object-detection device (24) is used to detect an object (26) proximate to the host-vehicle (12). The controller (32) is in communication with the traffic-scenario detector (14) and the object-detection device (24). The controller (32) configured to determine a preferred-algorithm (36) used to identify the object (26). The preferred-algorithm (36) is determined based on the present-scenario (16).
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Patent number: 10895879
    Abstract: A scenario aware perception system (10) suitable for use on an automated vehicle includes a traffic-scenario detector (14), an object-detection device (24), and a controller (32). The traffic-scenario detector (14) is used to detect a present-scenario (16) experienced by a host-vehicle (12). The object-detection device (24) is used to detect an object (26) proximate to the host-vehicle (12). The controller (32) is in communication with the traffic-scenario detector (14) and the object-detection device (24). The controller (32) configured to determine a preferred-algorithm (36) used to identify the object (26). The preferred-algorithm (36) is determined based on the present-scenario (16).
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: January 19, 2021
    Assignee: Motional AD LLC
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Patent number: 10848718
    Abstract: A vehicle perception sensor adjustment system includes a perception-sensor, a digital-map, and controller-circuit. The perception-sensor is configured to detect an object proximate to a host-vehicle. The perception-sensor is characterized as having a field-of-view that is adjustable. The digital-map indicates a contour of a roadway traveled by the host-vehicle. The controller-circuit in communication with the perception-sensor and the digital-map. The controller-circuit determines the field-of-view of the perception-sensor in accordance with the contour of the roadway indicated by the digital-map, and outputs a control-signal to the perception-sensor that adjusts the field-of-view of the perception-sensor.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: November 24, 2020
    Assignee: Aptiv Technologies Limited
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Patent number: 10586407
    Abstract: A tire-wear detection system for an automated vehicle includes a steering-angle-sensor, a vehicle-path-detector, and a controller. The steering-angle-sensor indicates a steering-angle of a host-vehicle. The vehicle-path-detector indicates a turning-radius of the host-vehicle. The controller is in communication with the steering-angle-sensor and the vehicle-path-detector. The controller determines a wear-status of a tire of the host-vehicle based on the turning-radius and the steering-angle.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: March 10, 2020
    Assignee: Aptiv Technologies Limited
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Publication number: 20190294176
    Abstract: A sensor data fusion system for a vehicle with multiple sensors includes a first-sensor, a second-sensor, and a controller-circuit. The first-sensor is configured to output a first-frame of data and a subsequent-frame of data indicative of objects present in a first-field-of-view. The first-frame is characterized by a first-time-stamp, the subsequent-frame of data characterized by a subsequent-time-stamp different from the first-time-stamp. The second-sensor is configured to output a second-frame of data indicative of objects present in a second-field-of-view that overlaps the first-field-of-view. The second-frame is characterized by a second-time-stamp temporally located between the first-time-stamp and the subsequent-time-stamp. The controller-circuit is configured to synthesize an interpolated-frame from the first-frame and the subsequent-frame. The interpolated-frame is characterized by an interpolated-time-stamp that corresponds to the second-time-stamp.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Publication number: 20190281260
    Abstract: A vehicle perception sensor adjustment system includes a perception-sensor, a digital-map, and controller-circuit. The perception-sensor is configured to detect an object proximate to a host-vehicle. The perception-sensor is characterized as having a field-of-view that is adjustable. The digital-map indicates a contour of a roadway traveled by the host-vehicle. The controller-circuit in communication with the perception-sensor and the digital-map. The controller-circuit determines the field-of-view of the perception-sensor in accordance with the contour of the roadway indicated by the digital-map, and outputs a control-signal to the perception-sensor that adjusts the field-of-view of the perception-sensor.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 12, 2019
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Patent number: 10384660
    Abstract: A brake control system for operating brakes of an automated vehicle at slow speed includes a motion-detector and a controller. The motion-detector detects relative-movement of a host-vehicle relative to a stationary-feature located apart from the host-vehicle. The controller is configured to operate brakes of the host-vehicle. The controller determines a vehicle-speed of the host-vehicle based on the relative-movement when the vehicle-speed is less than a speed-threshold, and regulates brake-pressure of the brakes based on the vehicle-speed.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 20, 2019
    Assignee: Aptiv Technologies Limited
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Publication number: 20190212734
    Abstract: A driving-rule system (10) suitable to operate an automated includes a vehicle-detector (16) and a controller (20). The vehicle-detector (16) is suitable for use on a host-vehicle (12). The vehicle-detector (16) is used to detect movement of an other-vehicle (14) proximate to the host-vehicle (12). The controller (20) is in communication with the vehicle-detector (16). The controller (20) is configured to operate the host-vehicle (12) in accordance with a driving-rule (22), detect an observed-deviation (24) of the driving-rule (22) by the other-vehicle (14), and modify the driving-rule (22) based on the observed-deviation (24).
    Type: Application
    Filed: April 19, 2017
    Publication date: July 11, 2019
    Inventors: Junqing Wei, Wenda Xu, Jarrod M. Snider, Jong Ho Lee
  • Publication number: 20190025835
    Abstract: A scenario aware perception system (10) suitable for use on an automated vehicle includes a traffic-scenario detector (14), an object-detection device (24), and a controller (32). The traffic-scenario detector (14) is used to detect a present-scenario (16) experienced by a host-vehicle (12). The object-detection device (24) is used to detect an object (26) proximate to the host-vehicle (12). The controller (32) is in communication with the traffic-scenario detector (14) and the object-detection device (24). The controller (32) configured to determine a preferred-algorithm (36) used to identify the object (26). The preferred-algorithm (36) is determined based on the present-scenario (16).
    Type: Application
    Filed: September 20, 2018
    Publication date: January 24, 2019
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Publication number: 20180364721
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Publication number: 20180354480
    Abstract: A brake control system for operating brakes of an automated vehicle at slow speed includes a motion-detector and a controller. The motion-detector detects relative-movement of a host-vehicle relative to a stationary-feature located apart from the host-vehicle. The controller is configured to operate brakes of the host-vehicle. The controller determines a vehicle-speed of the host-vehicle based on the relative-movement when the vehicle-speed is less than a speed-threshold, and regulates brake-pressure of the brakes based on the vehicle-speed.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 13, 2018
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Publication number: 20180292839
    Abstract: A navigation system for an automated vehicle includes a receiver, a three-dimensional-model (3D-model), and a controller. The receiver detects signals from satellites for determining a location of a host-vehicle on a digital-map. The 3D-model depicts objects in an area proximate the host-vehicle. The controller is in communication with the receiver and the 3D-model. The controller ignores a signal of a satellite detected by the receiver when the satellite is determined to be hidden by an object in the 3D-model.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 11, 2018
    Inventors: Junqing Wei, Jarrod M. Snider, Jonathan L. Wieskamp