Patents by Inventor Jasdave S. Chahal

Jasdave S. Chahal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230346980
    Abstract: Tail-tail RNA conjugates translatable by eukaryotic ribosomes, and pharmaceutically acceptable compositions including the same are provided. Methods for preparing such molecules, using them for treating and preventing diseases are described. In addition, processes for producing desired polypeptides using the molecules are also described.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Applicant: Tiba Biotech
    Inventors: Jasdave S CHAHAL, Justine S McPARTLAN
  • Publication number: 20230295241
    Abstract: Synthetic alphavirus-derived replicon expression systems comprising nucleic acid sequences encoding at least one modified nonstructural protein, and synthetic nucleic acid sequences encoding at least one heterologous protein are described. Methods of producing at least one heterologous protein in a cell, or of inducing an immune response in a subject by administering and/or expressing the synthetic alphavirus-derived replicon expression systems are provided.
    Type: Application
    Filed: February 10, 2023
    Publication date: September 21, 2023
    Applicant: TIBA BIOTECH
    Inventors: Jasdave S CHAHAL, Justine S. McPARTLAN
  • Patent number: 11613561
    Abstract: Synthetic alphavirus-derived replicon expression systems comprising nucleic acid sequences encoding at least one modified nonstructural protein, and synthetic nucleic acid sequences encoding at least one heterologous protein are described. Methods of producing at least one heterologous protein in a cell, or of inducing an immune response in a subject by administering and/or expressing the synthetic alphavirus-derived replicon expression systems are provided.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: March 28, 2023
    Assignee: TIBA BIOTECH, LLC
    Inventors: Jasdave S Chahal, Justine S McPartlan
  • Publication number: 20220298210
    Abstract: Synthetic alphavirus-derived replicon expression systems comprising nucleic acid sequences encoding at least one modified nonstructural protein, and synthetic nucleic acid sequences encoding at least one heterologous protein are described. Methods of producing at least one heterologous protein in a cell, or of inducing an immune response in a subject by administering and/or expressing the synthetic alphavirus-derived replicon expression systems are provided.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 22, 2022
    Applicant: TIBA BIOTECH
    Inventors: Jasdave S. CHAHAL, Justine S. McPARTLAN
  • Publication number: 20210338789
    Abstract: Compositions and methods for modified dendrimer nanoparticle (“MDNP”) delivery of therapeutic, prophylactic and/or diagnostic agent such as large repRNA molecules to the cells of a subject have been developed. MDNPs efficiently drive proliferation of antigen-specific T cells against intracellular antigen, and potentiate antigen-specific antibody responses. MDNPs can be multiplexed to deliver two or more different repRNAs to modify expression kinetics of encoded antigens and to simultaneous deliver repRNAs and mRNAs including the same UTR elements that promote expression of encoded antigens.
    Type: Application
    Filed: March 10, 2021
    Publication date: November 4, 2021
    Inventors: Omar F. Khan, Jasdave S. Chahal, Daniel G. Anderson, Hidde Ploegh, Robert S. Langer, Tyler E. Jacks, David A. Canner
  • Publication number: 20200155660
    Abstract: Compositions and methods for modified dendrimer nanoparticle (“MDNP”) delivery of therapeutic, prophylactic and/or diagnostic agent such as large repRNA molecules to the cells of a subject have been developed. MDNPs efficiently drive proliferation of antigen-specific T cells against intracellular antigen, and potentiate antigen-specific antibody responses. MDNPs can be multiplexed to deliver two or more different repRNAs to modify expression kinetics of encoded antigens and to simultaneous deliver repRNAs and mRNAs including the same UTR elements that promote expression of encoded antigens.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 21, 2020
    Inventors: Omar F. Khan, Jasdave S. Chahal, Daniel G. Anderson, Hidde Ploegh, Robert S. Langer, Tyler E. Jacks, David A. Canner
  • Patent number: 10548959
    Abstract: Compositions and methods for modified dendrimer nanoparticle (“MDNP”) delivery of therapeutic, prophylactic and/or diagnostic agent such as large repRNA molecules to the cells of a subject have been developed. MDNPs efficiently drive proliferation of antigen-specific T cells against intracellular antigen, and potentiate antigen-specific antibody responses. MDNPs can be multiplexed to deliver two or more different repRNAs to modify expression kinetics of encoded antigens and to simultaneous deliver repRNAs and mRNAs including the same UTR elements that promote expression of encoded antigens.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 4, 2020
    Assignees: Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research
    Inventors: Omar F. Khan, Jasdave S. Chahal, Daniel G. Anderson, Hidde Ploegh, Robert S. Langer, Tyler E. Jacks, David A. Canner
  • Publication number: 20170079916
    Abstract: Compositions and methods for modified dendrimer nanoparticle (“MDNP”) delivery of therapeutic, prophylactic and/or diagnostic agent such as large repRNA molecules to the cells of a subject have been developed. MDNPs efficiently drive proliferation of antigen-specific T cells against intracellular antigen, and potentiate antigen-specific antibody responses. MDNPs can be multiplexed to deliver two or more different repRNAs to modify expression kinetics of encoded antigens and to simultaneous deliver repRNAs and mRNAs including the same UTR elements that promote expression of encoded antigens.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 23, 2017
    Inventors: Omar F. Khan, Jasdave S. Chahal, Daniel G. Anderson, Hidde Ploegh, Robert S. Langer