Patents by Inventor Jasmin Côté

Jasmin Côté has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220162664
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: June 30, 2021
    Publication date: May 26, 2022
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Patent number: 11085064
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 10, 2021
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Publication number: 20200370086
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: February 28, 2020
    Publication date: November 26, 2020
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Patent number: 10669566
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Accelerate Giagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt, Phillip C. Halbert, Solene Bourgeois
  • Patent number: 10619180
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: April 14, 2020
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Publication number: 20190203252
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 4, 2019
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Patent number: 10273521
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 30, 2019
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Patent number: 10253355
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: April 9, 2019
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20180291419
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 11, 2018
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt, Phillip C. Halbert, Solene Bourgeois
  • Patent number: 10023895
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 17, 2018
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20180135093
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: Austin Ashby, Wayne Showalter, Jasmin Cote
  • Publication number: 20170023599
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20160289729
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20060245052
    Abstract: A magnification loupe carried by spectacles has a Galilean lens system comprising a single-element eyepiece lens and a two-element objective lens. The loupes may be mounted to eyeglass frames by a flip-up mounting member, or they may be mounted through the eyeglass lenses of the spectacles. The loupes provide high magnification while minimizing weight to thereby reduce strain and discomfort to users. In an exemplary embodiment, the objective lens has a non-circular shape that provides a wide field of view while further minimizing the weight of the loupe. A correction lens may be interchangeably coupled to the loupe housing to permit selective replacement with another correction lens to vary the working distance of the loupe.
    Type: Application
    Filed: June 29, 2006
    Publication date: November 2, 2006
    Applicant: KERR CORPORATION
    Inventors: Brian Wilt, Patrick Shipley, Jeffrey Hoffman, Jasmin Cote
  • Patent number: 7072124
    Abstract: A magnification loupe carried by spectacles has a Galilean lens system comprising a single-element eyepiece lens and a two-element objective lens. The loupes may be mounted to eyeglass frames by a flip-up mounting member, or they may be mounted through the eyeglass lenses of the spectacles. The loupes provide high magnification while minimizing weight to thereby reduce strain and discomfort to users. In an exemplary embodiment, the objective lens has a non-circular shape that provides a wide field of view while further minimizing the weight of the loupe. A correction lens may be interchangeably coupled to the loupe housing to permit selective replacement with another correction lens to vary the working distance of the loupe.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: July 4, 2006
    Assignee: Kerr Corporation
    Inventors: Brian L. Wilt, Patrick J. Shipley, Jeffrey M. Hoffman, Jasmin Côté
  • Publication number: 20040263954
    Abstract: A magnification loupe carried by spectacles has a Galilean lens system comprising a single-element eyepiece lens and a two-element objective lens. The loupes may be mounted to eyeglass frames by a flip-up mounting member, or they may be mounted through the eyeglass lenses of the spectacles. The loupes provide high magnification while minimizing weight to thereby reduce strain and discomfort to users. In an exemplary embodiment, the objective lens has a non-circular shape that provides a wide field of view while further minimizing the weight of the loupe. A correction lens may be interchangeably coupled to the loupe housing to permit selective replacement with another correction lens to vary the working distance of the loupe.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Applicant: Kerr Corporation
    Inventors: Brian L. Wilt, Patrick J. Shipley, Jeffrey M. Hoffman, Jasmin Cote