Patents by Inventor Jason Buenrostro

Jason Buenrostro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389409
    Abstract: The present disclosure relates to compositions and methods for assessing relative DNA levels (e.g., levels of genomic DNA, mtDNA, viral DNA, bacterial DNA, etc.) in a spatially-defined manner across a tissue sample, specifically providing DNA sequence identity and relative abundance information at high-resolution across multiple locations assessed across the tissue sample.
    Type: Application
    Filed: November 9, 2020
    Publication date: December 8, 2022
    Applicants: THE BROAD INSTITUTE, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE GENERAL HOSPITAL CORPORATION
    Inventors: Tongtong Zhao, Fei Chen, Jason Buenrostro, Evan Macosko
  • Publication number: 20210246503
    Abstract: Embodiments disclosed herein provide methods of using somatic mutations in mitochondrial genomes to retrospectively infer cell lineages in native contexts and to serve as genetic barcodes to measure clonal dynamics in complex cellular populations. Further, somatic mutations in mitochondrial DNA (mtDNA) are tracked by single cell genomic approaches for simultaneous analysis of single cell lineage and state. Applicants further show that mitochondrial mutations can be readily detected with contemporary single cell transcriptomic and epigenomic technologies to concomitantly capture gene expression profiles and chromatin accessibility, respectively.
    Type: Application
    Filed: June 11, 2019
    Publication date: August 12, 2021
    Inventors: Leif S. Ludwig, Caleb A. Lareau, Jacob C. Ulirsch, Aviv Regev, Vijay G. Sankaran, Jason Buenrostro, Christoph Muus
  • Publication number: 20190071656
    Abstract: Methods for labeling and imaging the accessible genome using a transposase are disclosed. In some embodiments, a bifunctional transposase complex or transposome is used to insert adaptors comprising chemical tags selectively at accessible sites in the genome where active regulatory DNA is located. Various chemical tags can be used for labeling DNA at insertion sites, including, for example, fluorescent dyes for fluorescence imaging, metal particles for electron microscopy or magnetic manipulation of DNA, isotopic labels, or biotin or other ligands, haptens, substrates, or inhibitors that are recognized by streptavidin, antibodies, enzymes, or receptors. Labeling DNA in this manner can be used to provide spatial information regarding the positioning of regulatory DNA in the genome and makes possible the imaging and sorting of cells based on the status of their regulatory DNA.
    Type: Application
    Filed: March 9, 2017
    Publication date: March 7, 2019
    Inventors: Howard Y. CHANG, William J. GREENLEAF, Xingqi CHEN, Jason BUENROSTRO
  • Patent number: 9309556
    Abstract: Certain embodiments provide a method for capturing a genomic fragment. The method may comprise: obtaining a substrate comprising a first population of surface-bound oligonucleotides and a second population of surface-bound oligonucleotides; hybridizing a first member of the first population of surface-bound oligonucleotides to a selection oligonucleotide comprising a region that hybridizes with the first member and a region that contains a genomic sequence; extending the first member of the first population of surface-bound oligonucleotides to produce a support-bound selection primer that comprises a sequence that is complementary to the genomic sequence; hybridizing the support-bound selection primer to a nucleic acid fragment comprising the genomic sequence; extending the support-bound selection primer to produce an extension product that contains a sequence that flanks the genomic sequence, e.g., in a genome; and amplifying the extension product on the substrate.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 12, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Samuel Myllykangas, Jason Buenrostro, Hanlee P. Ji
  • Publication number: 20120157322
    Abstract: Certain embodiments provide a method for capturing a genomic fragment. The method may comprise: obtaining a substrate comprising a first population of surface-bound oligonucleotides and a second population of surface-bound oligonucleotides; hybridizing a first member of the first population of surface-bound oligonucleotides to a selection oligonucleotide comprising a region that hybridizes with the first member and a region that contains a genomic sequence; extending the first member of the first population of surface-bound oligonucleotides to produce a support-bound selection primer that comprises a sequence that is complementary to the genomic sequence; hybridizing the support-bound selection primer to a nucleic acid fragment comprising the genomic sequence; extending the support-bound selection primer to produce an extension product that contains a sequence that flanks the genomic sequence, e.g., in a genome; and amplifying the extension product on the substrate.
    Type: Application
    Filed: September 21, 2011
    Publication date: June 21, 2012
    Inventors: Samuel Myllykangas, Jason Buenrostro, Hanlee P. Ji