Patents by Inventor Jason C. Murphy

Jason C. Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110257382
    Abstract: An immobilized metal affinity chromatography (IMAC) method for separating and/or purifying compounds containing a non-shielded purine or pyrimidine moiety or group such as nucleic acid, presumably through interaction with the abundant aromatic nitrogen atoms in the purine or pyrimidine moiety. The method can also be used to purify compounds containing purine or pyrimidine moieties where the purine and pyrimidine moieties are shielded from interaction with the column matrix from compounds containing a non-shielded purine or pyrimidine moiety or group. Thus, double-stranded plasmid and genomic DNA, which has no low binding affinity can be easily separated from RNA and/or oligonucleotides which bind strongly to metal-charged chelating matrices. IMAC columns clarify plasmid DNA from bacterial alkaline lysates, purify a ribozyme, and remove primers and other contaminants from PCR reactions. The metal ion affinity of yeast RNA decreases in the order: copper (II), nickel (II), zinc (II), and cobalt (II).
    Type: Application
    Filed: September 14, 2009
    Publication date: October 20, 2011
    Inventors: Richard C. Willson, Jason C. Murphy
  • Patent number: 7767399
    Abstract: Methods of isolating clinical-grade plasmid DNA from manufacturing processes, including large-scale fermentation regimes, are disclosed which encompass alternatives to two core unit operations common to plasmid DNA purification processes. The novel upstream and downstream purification processes disclosed herein provide for reduced production costs and increase process robustness. Either or both of the purification processes disclosed herein may be used in combination with additional purification steps known in the art that are associated with DNA plasmid purification technology.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: August 3, 2010
    Assignee: Merck & Co., Inc.
    Inventors: Jason C. Murphy, David B. Boyd, Adam Joel Kristopeit, Russel Jackson Lander, Michael Albert Winters
  • Patent number: 7598371
    Abstract: An immobilized metal affinity chromatography (IMAC) method for separating and/or purifying compounds containing a non-shielded purine or pyrimidine moiety or group such as nucleic acid, presumably through interaction with the abundant aromatic nitrogen atoms in the purine or pyrimidine moiety. The method can also be used to purify compounds containing purine or pyrimidine moieties where the purine and pyrimidine moieties are shielded from interaction with the column matrix from compounds containing a non-shielded purine or pyrimidine moiety or group. Thus, double-stranded plasmid and genomic DNA, which has no low binding affinity can be easily separated from RNA and/or oligonucleotides which bind strongly to metal-charged chelating matrices. IMAC columns clarify plasmid DNA from bacterial alkaline lysates, purify a ribozyme, and remove primers and other contaminants from PCR reactions. The metal ion affinity of yeast RNA decreases in the order: copper (II), nickel (II), zinc (II), and cobalt (II).
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 6, 2009
    Assignee: University of Houston
    Inventors: Richard C. Willson, Jason C. Murphy
  • Publication number: 20080138886
    Abstract: Methods of isolating clinical-grade plasmid DNA from manufacturing processes, including large-scale fermentation regimes, are disclosed which encompass alternatives to two core unit operations common to plasmid DNA purification processes. The novel upstream and downstream purification processes disclosed herein provide for reduced production costs and increase process robustness. Either or both of the purification processes disclosed herein may be used in combination with additional purification steps known in the art that are associated with DNA plasmid purification technology.
    Type: Application
    Filed: January 27, 2006
    Publication date: June 12, 2008
    Inventors: Jason C. Murphy, David B. Boyd, Adam Joel Kristopeit, Russel Jackson Lander, Michael Albert Winters
  • Publication number: 20040152076
    Abstract: An immobilized metal affinity chromatography (IMAC) method for separating and/or purifying compounds containing a non-shielded purine or pyrimidine moiety or group such as nucleic acid, presumably through interaction with the abundant aromatic nitrogen atoms in the purine or pyrimidine moiety. The method can also be used to purify compounds containing purine or pyrimidine moieties where the purine and pyrimidine moieties are shielded from interaction with the column matrix from compounds containing a non-shielded purine or pyrimidine moiety or group. Thus, double-stranded plasmid and genomic DNA, which has no low binding affinity can be easily separated from RNA and/or oligonucleotides which bind strongly to metal-charged chelating matrices. IMAC columns clarify plasmid DNA from bacterial alkaline lysates, purify a ribozyme, and remove primers and other contaminants from PCR reactions. The metal ion affinity of yeast RNA decreases in the order: copper (II), nickel (II), zinc (II), and cobalt (II).
    Type: Application
    Filed: November 6, 2001
    Publication date: August 5, 2004
    Inventors: Richard C. Willson, Jason C. Murphy
  • Publication number: 20020197637
    Abstract: A mechanical cell lysis technique involving the use of compaction protection technology to shield nucleic acids during mechanical lysis. Mechanical lysis is an efficient and widely used method of liberating the contents of microbial cells, but the shear sensitivity of large nucleic acids impairs the application of this technique to DNA purification. The invention uses compaction agents, small polycations that condense nucleic acids, to protect DNA from shear damage and allow mechanical lysis to be used in chromosomal and plasmid DNA purification. In addition to protecting DNA during lysis, compaction allows DNA to be pelleted with the insoluble cell debris, washed, and resolubilized to yield an enriched DNA product. Highly shear-sensitive nucleic acid molecules such as large plasmids and BACs can also be protected during lysis. An added benefit is that lysate viscosity is greatly reduced, allowing for reduced volumes compared to alkaline lysis.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 26, 2002
    Inventors: Richard C. Willson, Jason C. Murphy