Patents by Inventor Jason D. Buenrostro

Jason D. Buenrostro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180355424
    Abstract: Provided herein is a method for analyzing polynucleotides such as genomic DNA. In certain embodiments, the method comprises: (a) treating chromatin isolated from a population of cells with an insertional enzyme complex to produce tagged fragments of genomic DNA; (b) sequencing a portion of the tagged fragments to produce a plurality of sequence reads; and (c) making an epigenetic map of a region of the genome of the cells by mapping information obtained from the sequence reads to the region. A kit for performing the method is also provided.
    Type: Application
    Filed: July 24, 2018
    Publication date: December 13, 2018
    Inventors: Paul Giresi, Jason D. Buenrostro, Howard Y. Chang, William J. Greenleaf
  • Patent number: 10150995
    Abstract: Provided herein is a method for analyzing polynucleotides such as genomic DNA. In certain embodiments, the method comprises: (a) treating chromatin isolated from a population of cells with an insertional enzyme complex to produce tagged fragments of genomic DNA; (b) sequencing a portion of the tagged fragments to produce a plurality of sequence reads; and (c) making an epigenetic map of a region of the genome of the cells by mapping information obtained from the sequence reads to the region. A kit for performing the method is also provided.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: December 11, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Paul Giresi, Jason D. Buenrostro, Howard Y. Chang, William J. Greenleaf
  • Publication number: 20180327838
    Abstract: Provided herein is a method for analyzing polynucleotides such as genomic DNA. In certain embodiments, the method comprises: (a) treating chromatin isolated from a population of cells with an insertional enzyme complex to produce tagged fragments of genomic DNA; (b) sequencing a portion of the tagged fragments to produce a plurality of sequence reads; and (c) making an epigenetic map of a region of the genome of the cells by mapping information obtained from the sequence reads to the region. A kit for performing the method is also provided.
    Type: Application
    Filed: July 24, 2018
    Publication date: November 15, 2018
    Inventors: Paul GIRESI, Jason D. BUENROSTRO, Howard Y. CHANG, William J. GREENLEAF
  • Patent number: 10072283
    Abstract: Certain embodiments provide a method for capturing a genomic fragment. The method may comprise: obtaining a substrate comprising a first population of surface-bound oligonucleotides and a second population of surface-bound oligonucleotides; hybridizing a first member of the first population of surface-bound oligonucleotides to a selection oligonucleotide comprising a region that hybridizes with the first member and a region that contains a genomic sequence; extending the first member of the first population of surface-bound oligonucleotides to produce a support-bound selection primer that comprises a sequence that is complementary to the genomic sequence; hybridizing the support-bound selection primer to a nucleic acid fragment comprising the genomic sequence; extending the support-bound selection primer to produce an extension product that contains a sequence that flanks the genomic sequence, e.g., in a genome; and amplifying the extension product on the substrate.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: September 11, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Samuel Myllykangas, Jason D. Buenrostro, Hanlee P. Ji
  • Patent number: 10059989
    Abstract: Provided herein is a method for analyzing polynucleotides such as genomic DNA. In certain embodiments, the method comprises: (a) treating chromatin isolated from a population of cells with an insertional enzyme complex to produce tagged fragments of genomic DNA; (b) sequencing a portion of the tagged fragments to produce a plurality of sequence reads; and (c) making an epigenetic map of a region of the genome of the cells by mapping information obtained from the sequence reads to the region. A kit for performing the method is also provided.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 28, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Paul Giresi, Jason D. Buenrostro, Howard Y. Chang, William J. Greenleaf
  • Publication number: 20160060691
    Abstract: Provided herein is a method for analyzing polynucleotides such as genomic DNA. In certain embodiments, the method comprises: (a) treating chromatin isolated from a population of cells with an insertional enzyme complex to produce tagged fragments of genomic DNA; (b) sequencing a portion of the tagged fragments to produce a plurality of sequence reads; and (c) making an epigenetic map of a region of the genome of the cells by mapping information obtained from the sequence reads to the region. A kit for performing the method is also provided.
    Type: Application
    Filed: May 20, 2014
    Publication date: March 3, 2016
    Inventors: Paul Giresi, Jason D. Buenrostro, Howard Y. Chang, William J. Greenleaf
  • Publication number: 20150360194
    Abstract: Provided herein is a method for capturing DNA molecules in solution. The method may comprise: extracting DNA from a sample that comprises endogenous DNA and environmental DNA to produce extracted DNA; ligating universal adaptors to the extracted DNA; hybridizing the extracted DNA, in solution, with affinity-tagged RNA probes generated by: in vitro transcribing a library of fragmented reference genomic DNA that has been ligated to an RNA promoter adaptor, in the presence of an affinity-tagged ribonucleotide; binding the product with a capture agent that is tethered to a substrate in the presence of RNA oligonucleotides that are complementary to the adaptors, thereby capturing the hybridized DNA molecules on the substrate; washing the substrate to remove any unbound DNA molecules; and releasing the captured DNA molecules. A kit for performing the method is also provided.
    Type: Application
    Filed: May 2, 2014
    Publication date: December 17, 2015
    Inventors: Carlos D. Bustamante, Meredith L. Carpenter, Jason D. Buenrostro, William J. Greenleaf
  • Publication number: 20150017635
    Abstract: Certain embodiments provide a method for capturing a genomic fragment. The method may comprise: obtaining a substrate comprising a first population of surface-bound oligonucleotides and a second population of surface-bound oligonucleotides; hybridizing a first member of the first population of surface-bound oligonucleotides to a selection oligonucleotide comprising a region that hybridizes with the first member and a region that contains a genomic sequence; extending the first member of the first population of surface-bound oligonucleotides to produce a support-bound selection primer that comprises a sequence that is complementary to the genomic sequence; hybridizing the support-bound selection primer to a nucleic acid fragment comprising the genomic sequence; extending the support-bound selection primer to produce an extension product that contains a sequence that flanks the genomic sequence, e.g., in a genome; and amplifying the extension product on the substrate.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 15, 2015
    Inventors: Samuel Myllykangas, Jason D. Buenrostro, Hanlee P. Ji