Patents by Inventor Jason D. White

Jason D. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250084357
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Application
    Filed: September 23, 2024
    Publication date: March 13, 2025
    Inventors: Randall D. LOWE, JR., Kristin G. BEAUMONT, Aathavan KARUNAKARAN, Natalie C. MARKS, Jason M. MCEWEN, Mark P. WHITE, J. Tanner NEVILL, Gang F. WANG, Andrew W. MCFARLAND, Daniele MALLEO, Keith J. BREINLINGER, Xiao GUAN, Kevin T. CHAPMAN
  • Publication number: 20250027931
    Abstract: Methods are described herein for screening an antibody producing cell within a microfluidic environment. The antibody producing cell may be a B cell lymphocyte, which may be a memory B cell or a plasma cell. An antigen of interest may be brought into proximity with the antibody producing cell and binding of the antigen by an antibody produced by the antibody producing cell may be monitored. Methods of obtaining a sequencing library from an antibody producing cell are also described.
    Type: Application
    Filed: February 23, 2024
    Publication date: January 23, 2025
    Applicant: Bruker Cellular Analysis, Inc.
    Inventors: Minha Park, Jason C. Briggs, Jason M. McEwen, Ravi K. Ramenani, Hariharasudhan Chirra Dinakar, Kai W. Szeto, Adrienne T. Higa, Mark P. White, Randall D. Lowe, Jr., Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20240159784
    Abstract: Embodiments in accordance with the present disclosure are directed to apparatuses used for reaction screening and optimization purposes. An example apparatus includes a plurality of reaction vessels, a dispensing subsystem, at least one reactor module, an analysis subsystem, an automation subsystem, and control circuitry. The dispensing subsystem delivers reagents to the plurality of reaction vessels for a plurality of reaction mixtures having varied reaction conditions. The at least one reactor module drives a plurality of reactions within the plurality of reaction vessels. The analysis subsystem analyzes compositions contained in the plurality of reaction vessels. The automation subsystem selectively moves the plurality of reaction vessels from a location proximal to the dispensing subsystem to the at least one reactor module based on experimental design parameters. And, the control circuitry identifies optimum reaction conditions for a target end product based on the analysis.
    Type: Application
    Filed: December 20, 2023
    Publication date: May 16, 2024
    Applicant: SRI International
    Inventors: Nathan Collins, Jeremiah Malerich, Jason D. White, Kevin Luebke, Kristina Rucker, Brian McCoy
  • Patent number: 11885822
    Abstract: Embodiments in accordance with the present disclosure are directed to apparatuses used for reaction screening and optimization purposes. An example apparatus includes a plurality of reaction vessels, a dispensing subsystem, at least one reactor module, an analysis subsystem, an automation subsystem, and control circuitry. The dispensing subsystem delivers reagents to the plurality of reaction vessels for a plurality of reaction mixtures having varied reaction conditions. The at least one reactor module drives a plurality of reactions within the plurality of reaction vessels. The analysis subsystem analyzes compositions contained in the plurality of reaction vessels. The automation subsystem selectively moves the plurality of reaction vessels from a location proximal to the dispensing subsystem to the at least one reactor module based on experimental design parameters. And, the control circuitry identifies optimum reaction conditions for a target end product based on the analysis.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 30, 2024
    Assignee: SRI International
    Inventors: Nathan Collins, Jeremiah Malerich, Jason D. White, Kevin Luebke, Kristina Rucker, Brian McCoy
  • Publication number: 20200316552
    Abstract: Disclosed are modular chemical reaction systems and methods of using such chemical reaction systems. The disclosed systems can have a substrate layer and a plurality of modules selectively mounted to an outer surface of the substrate layer. The substrate layer can include flow connectors that cooperate with the modules to form a fluid flow pathway for performing at least one step of a chemical reaction. At least one of the modules can be a process module, such as a reactor or separator. The modules can also include at least one regulator module. The system can also include at least one analysis device that analyzes at least one characteristic of the chemical reaction as the reaction occurs. The system can also include processing circuitry that monitors and/or optimizes the chemical reaction based on feedback received from the analysis device or other system components.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 8, 2020
    Inventors: Jin-Ping Lim, David Stout, Nathan Collins, Jason D. White, Jeremiah Malerich
  • Publication number: 20200225251
    Abstract: Embodiments in accordance with the present disclosure are directed to apparatuses used for reaction screening and optimization purposes. An example apparatus includes a plurality of reaction vessels, a dispensing subsystem, at least one reactor module, an analysis subsystem, an automation subsystem, and control circuitry. The dispensing subsystem delivers reagents to the plurality of reaction vessels for a plurality of reaction mixtures having varied reaction conditions. The at least one reactor module drives a plurality of reactions within the plurality of reaction vessels. The analysis subsystem analyzes compositions contained in the plurality of reaction vessels. The automation subsystem selectively moves the plurality of reaction vessels from a location proximal to the dispensing subsystem to the at least one reactor module based on experimental design parameters. And, the control circuitry identifies optimum reaction conditions for a target end product based on the analysis.
    Type: Application
    Filed: June 29, 2018
    Publication date: July 16, 2020
    Inventors: Nathan Collins, Jeremiah Malerich, Jason D. White, Kevin Luebke, Kristina Rucker
  • Patent number: D1067431
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: March 18, 2025
    Assignee: Cilag GmbH International
    Inventors: Brian D. Schings, Carlie J. Love, William J. White, Anthony Nguyen, Jason D. Jones, Carol J. Wynn, Matthew S. Corbin