Patents by Inventor Jason E. Cuadra

Jason E. Cuadra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9330837
    Abstract: An energy transfer assembly includes first and second windings wound around a bobbin. The first winding has a first number of layers proximate to a first end and a second number of layers proximate to a second end of the bobbin. The second winding has a third number of layers proximate to the first end and a fourth number of layers proximate to the second end. At least a portion of one of the first and second windings overlaps at least a portion of the other one of the first and second windings. A degree of overlap between the first and second windings is non-uniform. An isolation barrier is between the first and second windings and around the bobbin. A distance between the isolation barrier and an axis of the bobbin varies along the length of the bobbin.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: May 3, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, John R. Estabrooks, Raymond K. Orr
  • Patent number: 8791746
    Abstract: A device includes an over-temperature protection circuit configured to protect against over-temperature. The over-temperature protection circuit is coupled to receive a signal representative of temperature at the temperature sensor. The over-temperature protection circuit is coupled to adjust a temperature at which over-temperature protection is triggered based at least in part on a rate of change of the temperature at the temperature sensor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 29, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Hartley Fred Horwitz
  • Publication number: 20140063863
    Abstract: An energy transfer assembly includes first and second windings wound around a bobbin. The first winding has a first number of layers proximate to a first end and a second number of layers proximate to a second end of the bobbin. The second winding has a third number of layers proximate to the first end and a fourth number of layers proximate to the second end. At least a portion of one of the first and second windings overlaps at least a portion of the other one of the first and second windings. A degree of overlap between the first and second windings is non-uniform. An isolation barrier is between the first and second windings and around the bobbin. A distance between the isolation barrier and an axis of the bobbin varies along the length of the bobbin.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 6, 2014
    Applicant: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, John R. Estabrooks, Raymond K. Orr
  • Patent number: 8614615
    Abstract: An energy transfer assembly with tuned leakage inductance and common mode noise compensation is disclosed. An example energy transfer assembly for use in a resonant power converter includes a first winding wound around a bobbin mounted on a magnetic core. The first winding has a first number of layers proximate to a first end along a length of the bobbin and a second number of layers proximate to a second end along the length of the bobbin. The energy transfer assembly also includes a second winding wound around the bobbin. The second winding has a third number of layers proximate to the first end along the length of the bobbin and a fourth number of layers proximate to the second end along the length of the bobbin. The first and second windings are wound around the bobbin such that at least a portion of one of the first and second windings overlaps at least a portion of an other one of the first and second windings around the bobbin.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: December 24, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, John R. Estabrooks, Raymond K. Orr
  • Publication number: 20120140525
    Abstract: An energy transfer assembly with tuned leakage inductance and common mode noise compensation is disclosed. An example energy transfer assembly for use in a resonant power converter includes a first winding wound around a bobbin mounted on a magnetic core. The first winding has a first number of layers proximate to a first end along a length of the bobbin and a second number of layers proximate to a second end along the length of the bobbin. The energy transfer assembly also includes a second winding wound around the bobbin. The second winding has a third number of layers proximate to the first end along the length of the bobbin and a fourth number of layers proximate to the second end along the length of the bobbin. The first and second windings are wound around the bobbin such that at least a portion of one of the first and second windings overlaps at least a portion of an other one of the first and second windings around the bobbin.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Applicant: POWER INTEGRATIONS, INC.
    Inventors: Jason E. Cuadra, John R. Estabrooks, Raymond K. Orr
  • Patent number: 7813150
    Abstract: Techniques to compensate for parameter variations in a feedback circuit are disclosed. In one embodiment, a regulator circuit includes an energy source coupled to output a generated current in response to a control current. A feedback resistor is coupled to an output of the regulator circuit. The feedback resistor is coupled to conduct a feedback current responsive to the output of the regulator circuit. A current amplifier is coupled to the feedback resistor to generate the control current in response to the feedback current. A compensation network is coupled to the current amplifier to adjust the control current in response to an extrinsic parameter of the regulator circuit. The compensation network includes a transistor and first, second and third resistors. The first resistor is coupled between the feedback resistor and a collector of the transistor. The second resistor coupled between the collector and the base of the transistor.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 12, 2010
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Arthur B. Odell, William M. Polivka
  • Patent number: 7675761
    Abstract: A flyback power supply method and apparatus is disclosed. An apparatus according to aspects of the present invention includes an energy transfer element having a primary winding and first and second output windings. The first and second output windings are coupled to produce first and second output values, respectively. A primary switch is coupled to the primary winding. A control circuit is coupled to the primary switch to regulate a sum of the first and second output values. A steering circuit having first and second output switches is also included. The first and second output switches are coupled to the first and second output windings, respectively, to regulate a ratio of the first output value to the second output value. The first output switch is coupled to block current through the first output winding and the second output switch is coupled to block current through second output winding. At least one of the first and second output switches is coupled to be closed when the primary switch is opened.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: March 9, 2010
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Simon Krugly, Peter Vaughan
  • Publication number: 20090201701
    Abstract: Techniques to compensate for parameter variations in a feedback circuit are disclosed. In one embodiment, a regulator circuit includes an energy source coupled to output a generated current in response to a control current. A feedback resistor is coupled to an output of the regulator circuit. The feedback resistor is coupled to conduct a feedback current responsive to the output of the regulator circuit. A current amplifier is coupled to the feedback resistor to generate the control current in response to the feedback current. A compensation network is coupled to the current amplifier to adjust the control current in response to an extrinsic parameter of the regulator circuit. The compensation network includes a transistor and first, second and third resistors. The first resistor is coupled between the feedback resistor and a collector of the transistor. The second resistor coupled between the collector and the base of the transistor.
    Type: Application
    Filed: April 22, 2009
    Publication date: August 13, 2009
    Applicant: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Arthur B. Odell, William Michael Polivka
  • Patent number: 7535735
    Abstract: Techniques to compensate for parameter variations in a feedback circuit are disclosed. In one embodiment, a regulator circuit includes an energy source coupled to output a generated current in response to a control current. A feedback resistor is coupled to an output of the regulator circuit. The feedback resistor is coupled to conduct a feedback current responsive to the output of the regulator circuit. A current amplifier is coupled to the feedback resistor to generate the control current in response to the feedback current. A compensation network is coupled to the current amplifier to adjust the control current in response to an extrinsic parameter of the regulator circuit. The compensation network includes a transistor and first, second and third resistors. The first resistor is coupled between the feedback resistor and a collector of the transistor. The second resistor coupled between the collector and the base of the transistor.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: May 19, 2009
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Arthur B. Odell, William Michael Polivka
  • Publication number: 20080298094
    Abstract: A flyback power supply method and apparatus is disclosed. An apparatus according to aspects of the present invention includes an energy transfer element having a primary winding and first and second output windings. The first and second output windings are coupled to produce first and second output values, respectively. A primary switch is coupled to the primary winding. A control circuit is coupled to the primary switch to regulate a sum of the first and second output values. A steering circuit having first and second output switches is also included. The first and second output switches are coupled to the first and second output windings, respectively, to regulate a ratio of the first output value to the second output value. The first output switch is coupled to block current through the first output winding and the second output switch is coupled to block current through second output winding. At least one of the first and second output switches is coupled to be closed when the primary switch is opened.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 4, 2008
    Inventors: Jason E. Cuadra, Simon Krugly, Peter Vaughan
  • Patent number: 7403402
    Abstract: A technique for extending the operating range of a flyforward converter to low input voltages. In one aspect, power converter includes a positive input supply rail and a negative input supply rail. A power converter input voltage is to be applied between the positive and negative input supply rails. A flyback energy transfer element having a flyback input winding and a forward energy transfer element having a forward input winding are also included. The flyback and forward input windings are coupled between the positive and negative input supply rails. Voltage control circuitry coupled to the forward energy transfer element is also included to reduce a voltage across the forward input winding, substantially to zero, when the power converter input voltage falls below a first threshold value.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: July 22, 2008
    Assignee: Power Integrations, Inc.
    Inventors: Arthur B. Odell, Richard L. Hester, Jason E. Cuadra
  • Patent number: 7209371
    Abstract: A technique for extending the operating range of a flyforward converter to low input voltages. In one aspect, power converter includes a positive input supply rail and a negative input supply rail. A power converter input voltage is to be applied between the positive and negative input supply rails. A flyback energy transfer element having a first input winding and a forward energy transfer element having a forward input winding are also included. The flyback and forward input windings are coupled between the positive and negative input supply rails. Voltage control circuitry coupled to the forward energy transfer element is also included to reduce a voltage across the forward input winding, substantially to zero, when the power converter input voltage falls below a first threshold value.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 24, 2007
    Assignee: Power Integrations, Inc.
    Inventors: Arthur B. Odell, Richard L. Hester, Jason E. Cuadra
  • Patent number: 7061778
    Abstract: A technique for extending the operating range of a flyforward converter to low input voltages. In one aspect, power converter includes a positive input supply rail and a negative input supply rail. A power converter input voltage is to be applied between the positive and negative input supply rails. A flyback energy transfer element having a flyback input winding and a forward energy transfer element having a forward input winding are also included. The flyback and forward input windings are coupled between the positive and negative input supply rails. Voltage control circuitry coupled to the forward energy transfer element is also included to reduce a voltage across the forward input winding, substantially to zero, when the power converter input voltage falls below a first threshold value.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: June 13, 2006
    Assignee: Power Integrations, Inc.
    Inventors: Arthur B. Odell, Richard L. Hester, Jason E. Cuadra
  • Patent number: 6301133
    Abstract: In a redundant power supply system, N+1 power supply modules are operated in parallel to provide power to a single load which may be connected via a DC bus and may employ a remote voltage sensing circuit. Each power supply module includes an ORing element that isolates a corresponding AC power supply from delivering power to the load in various conditions representing a fault occurring in the system. Each ORing element and power supply module is coupled to a control circuit that drives the operations of the ORing element. The control circuit includes three comparators and associated circuitry each for detecting one of the following conditions of system failure representing by: the presence of reverse current flowing across the ORing element caused by short circuit in the system, a selective overvoltage condition caused by a power supply delivering too much voltage to the load; and a failure in an AC power supply giving rise to an undervoltage condition.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: October 9, 2001
    Assignee: Astec International Limited
    Inventors: Jason E. Cuadra, Krishnamurthi Mohan, Kevin D. Wildash, Mohamed Amin S. Bernat