Patents by Inventor Jason E. Rehm

Jason E. Rehm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8685218
    Abstract: A precision flow controller is capable of providing a flow rate less than 100 microliters/minute and varying the flow rate in a prescribed manner that is both predictable and reproducible where the accuracy and precision of the flowrate is less than 5% of the flow rate. A plurality of variable pressure fluid supplies pump fluid through a single outlet. Flowmeters measure the flow rates and a controller compares the flow rates to desired flowrates and, if necessary, adjusts the plurality of variable pressure fluid supplies so that the variable pressure fluid supplies pump fluid at the desired flow rate. The variable pressure fluid supplies can be pneumatically driven.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 1, 2014
    Assignee: AB Sciex LLC
    Inventors: Phillip H. Paul, Jason E. Rehm, Don W. Arnold
  • Patent number: 8673144
    Abstract: A liquid sample is prepared at a preparation site and then processed, e.g. in an HPLC column. The sample is prepared and conveyed to the device at a flow rate which is substantially less than the flow rate through the device. The different flow rates are preferably provided by variable rate working fluid supplies which drive the sample from the preparation site and through the device.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 18, 2014
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: David W. Neyer, David J. Rakestraw, Jason E. Rehm
  • Patent number: 8021056
    Abstract: A junction is made between a first microfluidic substrate (12) having an elongate component (303) protruding from it and a second microfluidic substrate (22) having a corresponding conduit (261). Each of the substrates has a pair of alignment features, for example planar orthogonal surfaces (13, 15; 23, 25) or grooves (141, 151; 241, 251) in opposite sides of the substrate. The substrates are placed on an alignment jig 6 having location features (63, 65) corresponding to the alignment features. The elongate component can be surrounded by a compressible gasket 40). The substrates are pushed towards each other so that the elongate component enters the conduit and the gasket, if any, is compressed. A fluid-tight junction results so long as the substrates are maintained in the necessary position, either by permanent means, or, if a junction which can be disassembled is needed, by maintaining pressure between the substrates.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: September 20, 2011
    Assignee: AB Sciex, LLC
    Inventors: Don W. Arnold, Kenneth R. Hencken, Sammy S. Datwani, Patrick Pak-Ho Leung, Douglas R. Cyr, Jason E. Rehm
  • Publication number: 20110186157
    Abstract: A precision flow controller is capable of providing a flow rate less than 100 microliters/minute and varying the flow rate in a prescribed manner that is both predictable and reproducible where the accuracy and precision of the flowrate is less than 5% of the flow rate. A plurality of variable pressure fluid supplies pump fluid through a single outlet. Flowmeters measure the flow rates and a controller compares the flow rates to desired flowrates and, if necessary, adjusts the plurality of variable pressure fluid supplies so that the variable pressure fluid supplies pump fluid at the desired flow rate. The variable pressure fluid supplies can be pneumatically driven.
    Type: Application
    Filed: March 11, 2011
    Publication date: August 4, 2011
    Inventors: Phillip H. PAUL, Jason E. Rehm, Don W. Arnold
  • Patent number: 7927477
    Abstract: A precision flow controller is capable of providing a flow rate less than 100 microliters/minute and varying the flow rate in a prescribed manner that is both predictable and reproducible where the accuracy and precision of the flowrate is less than 5% of the flow rate. A plurality of variable pressure fluid supplies pump fluid through a single outlet. Flowmeters measure the flow rates and a controller compares the flow rates to desired flowrates and, if necessary, adjusts the plurality of variable pressure fluid supplies so that the variable pressure fluid supplies pump fluid at the desired flow rate. The variable pressure fluid supplies can be pneumatically driven.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 19, 2011
    Assignee: AB Sciex LLC
    Inventors: Phillip H. Paul, Jason E. Rehm, Don W. Arnold
  • Publication number: 20110018259
    Abstract: A junction is made between a first microfluidic substrate (12) having an elongate component (303) protruding from it and a second microfluidic substrate (22) having a corresponding conduit (261). Each of the substrates has a pair of alignment features, for example planar orthogonal surfaces (13, 15; 23, 25) or grooves (141, 151; 241, 251) in opposite sides of the substrate. The substrates are placed on an alignment jig 6 having location features (63, 65) corresponding to the alignment features. The elongate component can be surrounded by a compressible gasket 40). The substrates are pushed towards each other so that the elongate component enters the conduit and the gasket, if any, is compressed. A fluid-tight junction results so long as the substrates are maintained in the necessary position, either by permanent means, or, if a junction which can be disassembled is needed, by maintaining pressure between the substrates.
    Type: Application
    Filed: September 1, 2010
    Publication date: January 27, 2011
    Applicant: AB SCIEX LLC
    Inventors: Don W. Arnold, Kenneth R. Hencken, Sammy S. Datwani, Patrick Pak-Ho Leung, Douglas R. Cyr, Jason E. Rehm
  • Patent number: 7867694
    Abstract: A device for microfluidic control comprising a regulator that is moveable in a conduit where the regulator is a composite polymer formed from a composite mixture comprising a polymerizable precursor and a particulate filler.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: January 11, 2011
    Assignee: AB Sciex LLC
    Inventors: Jason E. Rehm, Phillip H. Paul, Douglas R. Cyr
  • Patent number: 7802923
    Abstract: A junction is made between a first microfluidic substrate (12) having an elongate component (303) protruding from it and a second microfluidic substrate (22) having a corresponding conduit (261). Each of the substrates has a pair of alignment features, for example planar orthogonal surfaces (13,15; 23,25) or grooves (141,151; 241, 251) in opposite sides of the substrate. The substrates are placed on an alignment jig 6 having location features (63, 65) corresponding to the alignment features. The elongate component can be surrounded by a compressible gasket 40). The substrates are pushed towards each other so that the elongate component enters the conduit and the gasket, if any, is compressed. A fluid-tight junction results so long as the substrates are maintained in the necessary position, either by permanent means, or, if a junction which can be disassembled is needed, by maintaining pressure between the substrates.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: September 28, 2010
    Assignee: AB Sciex LLC
    Inventors: Don W. Arnold, Kenneth R. Hencken, Sammy S. Datwani, Patrick Pak-Ho Leung, Douglas R. Cyr, Jason E. Rehm
  • Publication number: 20100086443
    Abstract: A liquid sample is prepared at a preparation site and then processed, e.g. in an HPLC column. The sample is prepared and conveyed to the device at a flow rate which is substantially less than the flow rate through the device. The different flow rates are preferably provided by variable rate working fluid supplies which drive the sample from the preparation site and through the device.
    Type: Application
    Filed: November 24, 2009
    Publication date: April 8, 2010
    Applicant: EKSIGENT TECHNOLOGIES, INC.
    Inventors: David W. Neyer, David J. Rakestraw, Jason E. Rehm
  • Patent number: 7645388
    Abstract: A liquid sample is prepared at a preparation site and then processed, e.g. in an HPLC column. The sample is prepared and conveyed to the device at a flow rate which is substantially less than the flow rate through the device. The different flow rates are preferably provided by variable rate working fluid supplies which drive the sample from the preparation site and through the device.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: January 12, 2010
    Assignee: Eksigent Technologies, LLC
    Inventors: David W. Neyer, David J. Rakestraw, Jason E. Rehm
  • Publication number: 20090129728
    Abstract: A junction is made between a first microfluidic substrate (12) having an elongate component (303) protruding from it and a second microfluidic substrate (22) having a corresponding conduit (261). Each of the substrates has a pair of alignment features, for example planar orthogonal surfaces (13,15; 23,25) or grooves (141,151; 241, 251) in opposite sides of the substrate. The substrates are placed on an alignment jig 6 having location features (63, 65) corresponding to the alignment features. The elongate component can be surrounded by a compressible gasket 40). The substrates are pushed towards each other so that the elongate component enters the conduit and the gasket, if any, is compressed. A fluid-tight junction results so long as the substrates are maintained in the necessary position, either by permanent means, or, if a junction which can be disassembled is needed, by maintaining pressure between the substrates.
    Type: Application
    Filed: April 1, 2005
    Publication date: May 21, 2009
    Applicant: Eksigent Technologies LLC
    Inventors: Don W. Arnold, Kenneth R. Hencken, Sammy S. Datwani, Patrick Pak-Ho Leung, Douglas R. Cyr, Jason E. Rehm
  • Publication number: 20090090174
    Abstract: A precision flow controller is capable of providing a flow rate less than 100 microliters/minute and varying the flow rate in a prescribed manner that is both predictable and reproducible where the accuracy and precision of the flowrate is less than 5% of the flow rate. A plurality of variable pressure fluid supplies pump fluid through a single outlet. Flowmeters measure the flow rates and a controller compares the flow rates to desired flowrates and, if necessary, adjusts the plurality of variable pressure fluid supplies so that the variable pressure fluid supplies pump fluid at the desired flow rate. The variable pressure fluid supplies can be pneumatically driven.
    Type: Application
    Filed: December 12, 2008
    Publication date: April 9, 2009
    Inventors: Phillip H. Paul, Jason E. Rehm, Don W. Arnold
  • Patent number: 7465382
    Abstract: A precision flow controller is capable of providing a flow rate less than 100 microliters/minute and varying the flow rate in a prescribed manner that is both predictable and reproducible where the accuracy and precision of the flowrate is less than 5% of the flow rate. A plurality of variable pressure fluid supplies pump fluid through a single outlet. Flowmeters measure the flow rates and a controller compares the flow rates to desired flowrates and, if necessary, adjusts the plurality of variable pressure fluid supplies so that the variable pressure fluid supplies pump fluid at the desired flow rate. The variable pressure fluid supplies can be pneumatically driven.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: December 16, 2008
    Assignee: Eksigent Technologies LLC
    Inventors: Phillip H. Paul, Jason E. Rehm, Don W. Arnold
  • Patent number: 7364647
    Abstract: A laminated flow device comprises a porous material encapsulated within bonding material. The porous material forms a flow path and the bonding material forms an enclosure surrounding the flow path. Micro-components, such as capillaries, electrodes, reservoirs, bridges, electrokinetic elements, and detectors, can be encapsulated within the device.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: April 29, 2008
    Assignee: Eksigent Technologies LLC
    Inventors: Phillip H. Paul, David W. Neyer, Jason E. Rehm
  • Patent number: 7296592
    Abstract: A device for microfluidic control comprising a regulator that is moveable in a conduit where the regulator is a composite polymer formed from a composite mixture comprising a polymerizable precursor and a particulate filler.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: November 20, 2007
    Assignee: Eksigent Technologies, LLC
    Inventors: Jason E. Rehm, Phillip H. Paul, Douglas R. Cyr
  • Patent number: 6994826
    Abstract: A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: February 7, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Phillip H. Paul, Don W. Arnold
  • Patent number: 6988402
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 24, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Patent number: 6962658
    Abstract: A variable flow rate injector provides accurate, precise, and reproducible injection volumes that have low dispersion. The invention is particularly well-suited for HPLC injection volumes <500 nL but can be used to inject larger volumes and in different applications as well. Injections are performed at a first flow rate and separations are performed at a second flow rate. For improved HPLC system performance, the first flow rate is less than the second flow rate. The injector uses a variable flow rate fluid supply that allows rapid switching between flow rates desired for injection and flow rates desired for separations.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 8, 2005
    Assignee: Eksigent Technologies, LLC
    Inventors: David W. Neyer, David J. Rakestraw, Jason E. Rehm
  • Patent number: 6952962
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: October 11, 2005
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Publication number: 20040232080
    Abstract: A variable flow rate injector provides accurate, precise, and reproducible injection volumes that have low dispersion. The invention is particularly well-suited for HPLC injection volumes <500 nL but can be used to inject larger volumes and in different applications as well. Injections are performed at a first flow rate and separations are performed at a second flow rate. For improved IIPLC system performance, the first flow rate is less than the second flow rate. The injector uses a variable flow rate fluid supply that allows rapid switching between flow rates desired for injection and flow rates desired for separations.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 25, 2004
    Inventors: David W. Neyer, David J. Rakestraw, Jason E. Rehm