Patents by Inventor Jason Eichenholz

Jason Eichenholz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210282736
    Abstract: A method for determining respiratory rate from an audio respiratory signal comprising capturing the audio respiratory signal generated by a subject using a microphone. The method also comprises segmenting the audio respiratory signal into a plurality of overlapping frames. For each frame of the plurality of overlapping frames, the method comprises extracting a signal envelope, computing an auto-correlation function, computing an FFT spectrum from the auto-correlation function and computing a respiratory rate of the subject using the FFT spectrum.
    Type: Application
    Filed: April 28, 2021
    Publication date: September 16, 2021
    Inventors: Charalampos-Christos Stamatopoulos, Francis Patrick O'Neill, Jason Eichenholz
  • Patent number: 6897999
    Abstract: Two, three dimensional color displays having uniform dispersion of red, green and blue visible light emitting micron particles. Pumping at approximately 976 nm can generate green and red colors having an approximately 4% limit efficiency. One source can generate three colors with approximately limit efficiency. Modulators, scanners and lens can move and focus laser beams to different pixels forming two dimensional color images. Displays can be formed from near infrared source beams that are simultaneously split and modulated with micro electro mechanical systems, spatial light modulators, liquid crystal displays, digital micromirrors, digital light projectors, grating light valves, liquid crystal silicon devices, polysilicon LCDs, electron beam written SLMs, and electrically switchable bragg gratings. Pixels containing: Yb,Tm:YLF can emit blue light, Yb,Er(NYF) can emit green light, and Yb,Er:KYF and Yb,Ef:YF3 can emit red light.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: May 24, 2005
    Assignee: The Research Foundation of the University of Central Florida
    Inventors: Michael Bass, Jason Eichenholz, Alexandra Rapaport
  • Patent number: 6327282
    Abstract: A tunable, solid state laser device with both visible and infrared laser emission is developed with a trivalent ytterbium-doped yttrium calcium oxyborate crystal as the host crystal. The Yb:YCOB crystal generates an infrared fundamental light over a wide bandwidth, from approximately 980 nanometers (nm) to approximately 1100 nm. The bandwidth generated by the Yb:YCOB crystal is approximately 100 nm wide and supports the generation of pulsed infrared light or when self-frequency doubled provides a compact, efficient, source of tunable, visible, blue or green laser light in wavelengths of approximately 490 nm to approximately 550 nm.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: December 4, 2001
    Assignee: University of Central Florida
    Inventors: Dennis Allen Hammons, Qing Ye, Jason Eichenholz, Bruce H. T. Chai, Martin Richardson
  • Patent number: 6301275
    Abstract: Neodymium-doped yttrium calcium oxyborate (Nd:YCOB) is the single active gain element for a solid-state laser device capable of achieving both lasing and self-frequency doubling optical effects. A pumping source for optically pumping Nd:YCOB can generate a laser light output of approximately 400 mW at approximately 1060 nm wavelength and a self-frequency doubled output of approximately 60 mW at approximately 530 nm wavelength. Thus, a laser device can be designed that is compact, less expensive and a high-powered source of visible, green laser light.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: October 9, 2001
    Assignee: University of Central Florida
    Inventors: Jason Eichenholz, Qing Ye, Dennis Allen Hammons, Bruce H. T. Chai, Martin Richardson
  • Publication number: 20010010700
    Abstract: Neodymium-doped yttrium calcium oxyborate (Nd:YCOB) is the single active gain element for a solid-state laser device capable of achieving both lasing and self-frequency doubling optical effects. A pumping source for optically pumping Nd:YCOB can generate a laser light output of approximately 400 mW at approximately 1060 nm wavelength and a self-frequency doubled output of approximately 60 mW at approximately 530 nm wavelength. Thus, a laser device can be designed that is compact, less expensive and a high-powered source of visible, green laser light.
    Type: Application
    Filed: December 27, 2000
    Publication date: August 2, 2001
    Applicant: University of Central Florida
    Inventors: Jason Eichenholz, Qing Ye, Dennis Allen Hammons, Bruce H.T. Chai, Martin Richardson
  • Publication number: 20010010697
    Abstract: A tunable, solid state laser device with both visible and infrared laser emission is developed with a trivalent ytterbium-doped yttrium calcium oxyborate crystal as the host crystal. The Yb:YCOB crystal generates an infrared fundamental light over a wide bandwidth, from approximately 980 nanometers (nm) to approximately 1100 nm. The bandwidth generated by the Yb:YCOB crystal is approximately 100 nm wide and supports the generation of pulsed infrared light or when self-frequency doubled provides a compact, efficient, source of tunable, visible, blue or green laser light in wavelengths of approximately 490 nm to approximately 550 nm.
    Type: Application
    Filed: December 27, 2000
    Publication date: August 2, 2001
    Inventors: Dennis Allen Hammons, Qing Ye, Jason Eichenholz, Bruce H.T. Chai, Martin Richardson
  • Patent number: 6185236
    Abstract: Neodymium-doped yttrium calcium oxyborate (Nd:YCOB) is the single active gain element for a solid-state laser device capable of achieving both lasing and self-frequency doubling optical effects. A pumping source for optically pumping Nd:YCOB can generate a laser light output of approximately 400 mW at approximately 1060 nm wavelength and a self-frequency doubled output of approximately 60 mW at approximately 530 nm wavelength. Thus, a laser device can be designed that is compact, less expensive and a high-powered source of visible, green laser light.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: February 6, 2001
    Assignee: University of Central Florida
    Inventors: Jason Eichenholz, Bruce H. T. Chai, Qing Ye, Martin Richardson, Dennis Allen Hammons
  • Patent number: 6185231
    Abstract: A tunable, solid state laser device with both visible and infrared laser emission is developed with a trivalent ytterbium-doped yttrium calcium oxyborate crystal as the host crystal. The Yb:YCOB crystal generates an infrared fundamental light over a wide bandwidth, from approximately 980 nanometers (nm) to approximately 1100 nm. The bandwidth generated by the Yb:YCOB crystal is approximately 100 nm wide and supports the generation of pulsed infrared light or when self-frequency doubled provides a compact, efficient, source of tunable, visible, blue or green laser light in wavelengths of approximately 490 nm to approximately 550 nm.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: February 6, 2001
    Assignee: University of Central Florida
    Inventors: Dennis Allen Hammons, Qing Ye, Jason Eichenholz, Bruce H. T. Chai, Martin Richardson
  • Patent number: RE42184
    Abstract: Two, three dimensional color displays having uniform dispersion of red, green and blue visible light emitting micron particles. Pumping at approximately 976 nm can generate green and red colors having an approximately 4% limit efficiency. One source can generate three colors with approximately limit efficiency. Modulators, scanners and lens can move and focus laser beams to different pixels forming two dimensional color images. Displays can be formed from near infrared source beams that are simultaneously split and modulated with micro electro mechanical systems, spatial light modulators, liquid crystal displays, digital micromirrors, digital light projectors, grating light valves, liquid crystal silicon devices, polysilicon LCDs, electron beam written SLMs, and electrically switchable bragg gratings. Pixels containing: Yb,Tm:YLF can emit blue light, Yb,Er(NYF) can emit green light, and Yb,Er:KYF and Yb,Ef:YF3 can emit red light.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 1, 2011
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Michael Bass, Jason Eichenholz, Alexandra Rapaport