Patents by Inventor Jason Elledge

Jason Elledge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070275637
    Abstract: Planarizing workpieces, e.g., microelectronic workpieces, can employ a process indicator which is adapted to change an optical property in response to a planarizing condition. This process indicator may, for example, change color in response to reaching a particular temperature or in response to a particular shear force. In this example, the change in color of the process indicator may be correlated with an ongoing operating condition of the planarizing machine, such as excessive downforce, or correlated with an endpoint of the planarizing operation. Incorporating the process indicator in the planarizing medium, as proposed for select applications, can enable relatively simple, real-time collection of information which can be used to control a planarizing operation.
    Type: Application
    Filed: August 8, 2007
    Publication date: November 29, 2007
    Applicant: Micron Technology, Inc.
    Inventor: Jason Elledge
  • Publication number: 20070161333
    Abstract: Chemical-mechanical planarization (CMP) apparatus and methods for detecting polishing pad properties using ultrasonic imaging is presented. An ultrasonic probe assembly transmits ultrasonic signals onto the surface of a polishing pad during a CMP process. Reflected ultrasonic signals are collected and analyzed to monitor polishing pad properties in real-time. This allows CMP process adjustments to be made during the CMP process.
    Type: Application
    Filed: March 15, 2007
    Publication date: July 12, 2007
    Applicant: Micron Technology, Inc.
    Inventor: Jason Elledge
  • Publication number: 20070004321
    Abstract: Systems and methods for polishing microfeature workpieces. In one embodiment, a method includes determining a status of a characteristic of a microfeature workpiece and moving a carrier head and/or a polishing pad relative to the other to rub the microfeature workpiece against the polishing pad after determining the status of the characteristic of the microfeature workpiece. The carrier head also carries a plurality of piezoelectric members. The method further includes applying pressure against a back side of the microfeature workpiece in response to the determined status of the characteristic by energizing at least one of the plurality of piezoelectric members. In another embodiment, a system includes a workpiece carrier assembly, a plurality of piezoelectric members, a polishing pad, a metrology tool for determining a status of the characteristic, and a controller. The controller can have a computer-readable medium containing instructions to perform the above-mentioned method.
    Type: Application
    Filed: September 8, 2006
    Publication date: January 4, 2007
    Applicant: Micron Technology, Inc.
    Inventor: Jason Elledge
  • Publication number: 20060228995
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 12, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Jason Elledge, Nagasubramaniyan Chandrasekaran
  • Publication number: 20060073757
    Abstract: A process for anodically bonding an array of spacer columns to one of the inner major faces on one of the generally planar plates of an evacuated, flat panel video display. The process includes using a generally planar plate having a plurality of spacer column attachment sites; providing electrical interconnection between all attachment sites; coating each attachment site with a patch of oxidizable material; providing an array of unattached permanent glass spacer columns, each unattached permanent spacer column being of uniform length and being positioned longitudinally perpendicular to a single plane, with the plane intersecting the midpoint of each unattached spacer column; positioning the array such that an end of one permanent spacer column is in contact with the oxidizable material patch at each attachment site; and anodically bonding the contacting end of each permanent spacer column to the oxidizable material layer.
    Type: Application
    Filed: November 21, 2005
    Publication date: April 6, 2006
    Inventors: James Hoffmann, Jason Elledge
  • Publication number: 20060040588
    Abstract: Polishing pads, planarizing machines and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies. The polishing pads, for example, can be web-format pads, and the planarizing machines can be web-format machines. In a typical application, the web-format machines have a pad advancing mechanism and stationary table with a first dimension extending along a pad travel path, a second dimension transverse to the first dimension, and an illumination site from which a laser beam can emanate from the table. The pad advancing mechanism moves the pad along the pad travel path to replace worn portions of the pad with fresh portions. In one embodiment of the invention, a web-format polishing pad includes a planarizing medium and an optical pass-through system having a plurality of view sites through which a light beam can pass through the pad.
    Type: Application
    Filed: August 18, 2005
    Publication date: February 23, 2006
    Inventor: Jason Elledge
  • Publication number: 20050255792
    Abstract: Carrier assemblies, polishing machines with carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces are disclosed herein. In one embodiment, a carrier assembly includes a head having a chamber, a magnetic field source carried by the head, and a magnetic fluid in the chamber. The magnetic field source is configured to generate a magnetic field in the head. The magnetic fluid changes viscosity within the chamber under the influence of the magnetic field to exert a force against at least a portion of the micro-device workpiece. The magnetic fluid can be a magnetorheological fluid. The magnetic field source can include an electrically conductive coil and/or a magnet, such as an electromagnet. The carrier assembly can also include a fluid cell with a cavity to receive the magnetic fluid.
    Type: Application
    Filed: July 22, 2005
    Publication date: November 17, 2005
    Applicant: Micron Technology, Inc.
    Inventor: Jason Elledge
  • Publication number: 20050090105
    Abstract: Planarizing workpieces, e.g., microelectronic workpieces, can employ a process indicator that is adapted to change an optical property in response to a planarizing condition. This process indicator may, for example, change color in response to reaching a particular temperature or in response to a particular shear force. In this example, the change in color of the process indicator may be correlated with an ongoing operating condition of the planarizing machine, such as excessive downforce, or correlated with an endpoint of the planarizing operation. Incorporating the process indicator in the planarizing medium, as proposed for select applications, can enable relatively simple, real-time collection of information that can be used to control a planarizing operation.
    Type: Application
    Filed: November 1, 2004
    Publication date: April 28, 2005
    Applicant: Micron Technology, Inc.
    Inventor: Jason Elledge
  • Publication number: 20050051267
    Abstract: Chemical-mechanical planarization (CMP) apparatus and methods for detecting polishing pad properties using ultrasonic imaging is presented. An ultrasonic probe assembly transmits ultrasonic signals onto the surface of a polishing pad during a CMP process. Reflected ultrasonic signals are collected and analyzed to monitor polishing pad properties in real-time. This allows CMP process adjustments to be made during the CMP process.
    Type: Application
    Filed: October 21, 2004
    Publication date: March 10, 2005
    Inventor: Jason Elledge
  • Publication number: 20050032461
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 10, 2005
    Inventors: Jason Elledge, Nagasubramaniyan Chandrasekaran
  • Publication number: 20050026546
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 3, 2005
    Inventors: Jason Elledge, Nagasubramaniyan Chandrasekaran
  • Publication number: 20050026545
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 3, 2005
    Inventors: Jason Elledge, Nagasubramaniyan Chandrasekaran
  • Publication number: 20050026544
    Abstract: Carrier assemblies, polishing machines with carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces are disclosed herein. In one embodiment, a carrier assembly includes a head having a chamber, a magnetic field source carried by the head, and a magnetic fluid in the chamber. The magnetic field source is configured to generate a magnetic field in the head. The magnetic fluid changes viscosity within the chamber under the influence of the magnetic field to exert a force against at least a portion of the micro-device workpiece. The magnetic fluid can be a magnetorheological fluid. The magnetic field source can include an electrically conductive coil and/or a magnet, such as an electromagnet. The carrier assembly can also include a fluid cell with a cavity to receive the magnetic fluid.
    Type: Application
    Filed: August 23, 2004
    Publication date: February 3, 2005
    Inventor: Jason Elledge