Patents by Inventor Jason F. Rhubottom

Jason F. Rhubottom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124923
    Abstract: A method of determining whether one or more forms of a nucleic acid analyte are present in a sample. The method includes dissolving an amplification reagent with a first solvent, where the amplification reagent contains oligonucleotides sufficient to amplify and detect a first region of a first form of the analyte, where the first solvent contains one or more oligonucleotides which, in combination with the oligonucleotides of the amplification reagent, are sufficient to amplify and detect a second region of a second form of the analyte, where the one or more oligonucleotides of the first solvent are insufficient to amplify and detect the first or second form of the analyte, and where the first and second regions each comprise a different nucleotide base sequence.
    Type: Application
    Filed: July 28, 2023
    Publication date: April 18, 2024
    Inventors: Patrick L. PETERSON, Jennifer L. TIDD, Anne-Laure SHAPIRO, Ankur H. SHAH, James T. TUGGLE, David OPALSKY, Alberto A. LIO, Timothy J. SCHEER, Jason F. RHUBOTTOM, David Aaron BUSE
  • Publication number: 20240093277
    Abstract: An automated system for performing nucleic acid amplification assays on samples provided to the system, where the system includes data input components configured to enable input specifying one or more user-defined assay parameters; data storage media storing a first set of assay parameters, the first set of assay parameters consisting of system-defined parameters, and a second set of assay parameters, the second set of assay parameters including the one or more user-defined parameters; and command input components configured to enable input specifying (i) that a first nucleic acid amplification assay be performed on a first sample in accordance with the first set of assay parameters, and (ii) that a second nucleic acid amplification assay be performed on a second sample in accordance with the second set of assay parameters.
    Type: Application
    Filed: July 28, 2023
    Publication date: March 21, 2024
    Inventors: Jennifer L. TIDD, Ann-Laure SHAPIRO, Ankur H. SHAH, James T. TUGGLE, David OPALSKY, Alberto A. LIO, Timothy J. SCHEER, Jason F. RHUBOTTOM, David Aaron BUSE
  • Publication number: 20240043916
    Abstract: A method of performing a lab developed test for detecting a nucleic acid analyte on an automated analyzer. The method includes a first step of using a computer to select, define or modify one or more user-defined parameters of a protocol for performing the lab developed test on the analyzer, where each user-defined parameter of the protocol defines a step to be performed by the analyzer during the lab developed test. The method further includes a second step of performing the lab developed test with the protocol of the first step, where the analyzer stores one or more system-defined parameters for performing the lab developed test, the one or more system-defined parameters being installed on the analyzer prior to performing first step.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 8, 2024
    Inventors: Jennifer L. TIDD, Ann-Laure SHAPIRO, Ankur H. SHAH, James T. TUGGLE, David OPALSKY, Alberto A. LIO, Timothy J. SCHEER, Jason F. RHUBOTTOM, David Aaron BUSE
  • Patent number: 11840722
    Abstract: A diagnostic system is configured to perform first and second, different nucleic acid amplification reactions. The system includes a bulk reagent container compartment configured to store first bulk reagent container containing a first bulk reagent for performing sample preparation processes with a first subset and a second subset of a plurality of samples and a second bulk reagent container containing a second bulk reagent for performing the first nucleic acid amplification reaction. The system includes a unit-dose reagent compartment storing a unit-dose reagent pack including unit-dose reagents for performing the second nucleic acid amplification reaction.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: December 12, 2023
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Patent number: 11434521
    Abstract: A method for performing a nucleic acid amplification assay employs a thermally-conductive receptacle holder with one or more receptacle wells, each conforming to an outer surface of a lower portion of a vial. A through-hole extends from an inner surface of each well to an outer surface of the holder. A thermal element is positioned proximal to the holder for altering a temperature of the holder. A signal detection module is configured to generate an excitation signal directed through the through-hole of the well and detect an optical emission from a fluid contained in the vial supported by the well. At least one well supports a capped vial containing a reagent for a nucleic acid amplification assay and including an opaque cap sealing an open end of the vial. The lower portion of the vial is contained within a well, and the cap is situated above a top surface of the holder.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: September 6, 2022
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Howard Combs, Byron J. Knight, Norbert D. Hagen, David Opalsky, Jason F. Rhubottom, Keith Moravick, Tyler Moore, Anita Prasad, Bruce Richardson
  • Publication number: 20220162677
    Abstract: A method for performing a nucleic acid amplification assay employs a thermally-conductive receptacle holder with one or more receptacle wells, each conforming to an outer surface of a lower portion of a vial. A through-hole extends from an inner surface of each well to an outer surface of the holder. A thermal element is positioned proximal to the holder for altering a temperature of the holder. A signal detection module is configured to generate an excitation signal directed through the through-hole of the well and detect an optical emission from a fluid contained in the vial supported by the well. At least one well supports a capped vial containing a reagent for a nucleic acid amplification assay and including an opaque cap sealing an open end of the vial. The lower portion of the vial is contained within a well, and the cap is situated above a top surface of the holder.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Applicant: Gen-Probe Incorporated
    Inventors: David A. Buse, David Howard Combs, Byron J. Knight, Norbert D. Hagen, David Opalsky, Jason F. Rhubottom, Keith Moravick, Tyler Moore, Anita Prasad, Bruce Richardson
  • Patent number: 11279967
    Abstract: A system for performing a nucleic acid amplification assay that includes a receptacle holder formed from a thermally conductive material and having a receptacle well for receiving a lower portion of a vial; a thermal element for cycling the temperature of the receptacle holder; a signal detection module in optical communication with the receptacle well; and a robotic pipettor. The receptacle holder supports a capped vial having a plastic, opaque cap in a snap-fit with a single plastic vial containing a nucleic acid amplification reagent. An upper portion of the cap includes a probe recess that is configured to be removably engaged by an end of a probe of the robotic pipettor. A lower portion of the vial is contained within the receptacle well, and the cap is situated above a top surface of the receptacle holder.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: March 22, 2022
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Howard Combs, Byron J. Knight, Norbert D. Hagen, David Opalsky, Jason F. Rhubottom, Keith Moravick, Tyler Moore, Anita Prasad, Bruce Richardson
  • Publication number: 20210324445
    Abstract: A diagnostic system is configured to perform first and second, different nucleic acid amplification reactions. The system includes a bulk reagent container compartment configured to store first bulk reagent container containing a first bulk reagent for performing sample preparation processes with a first subset and a second subset of a plurality of samples and a second bulk reagent container containing a second bulk reagent for performing the first nucleic acid amplification reaction. The system includes a unit-dose reagent compartment storing a unit-dose reagent pack including unit-dose reagents for performing the second nucleic acid amplification reaction.
    Type: Application
    Filed: January 11, 2021
    Publication date: October 21, 2021
    Applicant: Gen-Probe Incorporated
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Patent number: 11098343
    Abstract: A processing module is configured to extend the capabilities of an analyzer configured to process substances within each of a plurality of receptacles. The module includes a container transport configured to transport a container from a location within the processing module to a location within the analyzer that is accessible to a substance transfer device of the analyzer. A receptacle distribution system is configured to receive a receptacle from the analyzer, transfer the receptacle into the processing module, and to move the receptacle between different locations within the analyzer. A substance transfer device of the module is configured to dispense substances into or remove substances from the receptacle within the processing module. A reagent card exchanger provides an input device for inserting reagent cards into and removing reagent cards from the module, stores reagent cards within the module, and transfers reagent cards to different location within the module.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 24, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Publication number: 20210155978
    Abstract: Systems and methods for performing a plurality of nucleic acid amplification assays in an automated analyzer. A first nucleic acid amplification assay of the plurality is performed in accordance with a first set of assay parameters which consist of system-defined parameters. And a second nucleic acid amplification assay of the plurality is performed in accordance with a second set of assay parameters which includes one or more user-defined parameters.
    Type: Application
    Filed: July 10, 2018
    Publication date: May 27, 2021
    Applicant: Gen-Probe Incorporated
    Inventors: Jennifer L. TIDD, Anne-Laure SHAPIRO, Ankur H. SHAH, James T. TUGGLE, David OPALSKY, Alberto A. LIO, Timothy J. SCHEER, Jason F. RHUBOTTOM, David Aaron BUSE
  • Patent number: 10975416
    Abstract: One or more temperature cycles are applied to the contents of a processing vial closed by an interlocked cap within a thermal cycler. The processing vial and the interlocked cap are transferred from the thermal cycler to a storage compartment within the instrument with a transfer mechanism with a probe engaged with the cap. In the storage compartment, the processing vial and interlocked cap are moved to an access opening in the instrument and are removed from the instrument through the access opening.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: April 13, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Publication number: 20210071242
    Abstract: A system, method and computer readable medium enabling a user to specify user-defined assay parameters of an assay protocol for processing a sample and causing a computer-controlled analyzer to perform an assay in accordance with the assay protocol.
    Type: Application
    Filed: January 29, 2019
    Publication date: March 11, 2021
    Applicant: Gen-Probe Incorporated
    Inventors: Jennifer L. TIDD, Anne-Laure SHAPIRO, Jason F. RHUBOTTOM, Alberto A. LIO, Timothy J. SCHEER, James T. TUGGLE, Ankur H. SHAH, David OPALSKY
  • Publication number: 20210017579
    Abstract: A system for performing a nucleic acid amplification assay comprises a thermally-conductive receptacle holder with one or more receptacle wells, each conforming to an outer surface of a lower portion of a vial. A through-hole extends from an inner surface of each well to an outer surface of the holder. A thermal element is positioned proximal to the holder for altering a temperature of the holder. A signal detection module is configured to generate an excitation signal directed through the through-hole of the well and detect an optical emission from a fluid contained in the vial supported by the well. At least one well supports a capped vial containing a reagent for a nucleic acid amplification assay and including an opaque cap sealing an open end of the vial. The lower portion of the vial is contained within a well, and the cap is situated above a top surface of the holder.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 21, 2021
    Applicant: Gen-Probe Incorporated
    Inventors: David A. Buse, David Howard Combs, Byron J. Knight, Norbert D. Hagen, David Opalsky, Jason F. Rhubottom, Keith Moravick, Tyler Moore, Anita Prasad, Bruce Richardson
  • Patent number: 10711297
    Abstract: An automated method for analyzing a plurality of samples within a housing of a self-contained system. The system is loaded with a plurality of samples, after which a first assay is performed on a first sample subset and a second assay performed on a second sample subset. The two assays include exposing the samples to a target capture reagent having a solid support for directly or indirectly immobilizing a target nucleic acid that may be present in one or more of the samples. The two assays may be performed with the same or different target capture reagents and target nucleic acids, but the receptacles for performing the exposing step have substantially identical geometries. Following the exposing step, an amplification reaction for amplifying a region of the target nucleic acid is performed with each sample. The amplification reactions of the two assays are performed in receptacles having different geometries.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: July 14, 2020
    Assignee: Gen-Probe Incorporated
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Publication number: 20190284612
    Abstract: An automated method for analyzing a plurality of samples within a housing of a self-contained system. The system is loaded with a plurality of samples, after which a first assay is performed on a first sample subset and a second assay performed on a second sample subset. The two assays include exposing the samples to a target capture reagent having a solid support for directly or indirectly immobilizing a target nucleic acid that may be present in one or more of the samples. The two assays may be performed with the same or different target capture reagents and target nucleic acids, but the receptacles for performing the exposing step have substantially identical geometries. Following the exposing step, an amplification reaction for amplifying a region of the target nucleic acid is performed with each sample. The amplification reactions of the two assays are performed in receptacles having different geometries.
    Type: Application
    Filed: March 25, 2019
    Publication date: September 19, 2019
    Applicant: Gen-Probe Incorporated
    Inventors: David A. BUSE, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Publication number: 20180298426
    Abstract: A processing module is configured to extend the capabilities of an analyzer configured to process substances within each of a plurality of receptacles. The module includes a container transport configured to transport a container from a location within the processing module to a location within the analyzer that is accessible to a substance transfer device of the analyzer. A receptacle distribution system is configured to receive a receptacle from the analyzer, transfer the receptacle into the processing module, and to move the receptacle between different locations within the analyzer. A substance transfer device of the module is configured to dispense substances into or remove substances from the receptacle within the processing module. A reagent card exchanger provides an input device for inserting reagent cards into and removing reagent cards from the module, stores reagent cards within the module, and transfers reagent cards to different location within the module.
    Type: Application
    Filed: June 18, 2018
    Publication date: October 18, 2018
    Inventors: David A. BUSE, David OPALSKY, Jason F. RHUBOTTOM, Norbert D. HAGEN, Jennifer L. TIDD
  • Publication number: 20180298427
    Abstract: One or more temperature cycles are applied to the contents of a processing vial closed by an interlocked cap within a thermal cycler. The processing vial and the interlocked cap are transferred from the thermal cycler to a storage compartment within the instrument with a transfer mechanism with a probe engaged with the cap. In the storage compartment, the processing vial and interlocked cap are moved to an access opening in the instrument and are removed from the instrument through the access opening.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Applicant: Gen-Probe Incorporated
    Inventors: David A. BUSE, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Publication number: 20170335373
    Abstract: An automated method for analyzing a plurality of samples within a housing of a self-contained system. The system is loaded with a plurality of samples, after which a first assay is performed on a first sample subset and a second assay performed on a second sample subset. The two assays include exposing the samples to a target capture reagent having a solid support for directly or indirectly immobilizing a target nucleic acid that may be present in one or more of the samples. The two assays may be performed with the same or different target capture reagents and target nucleic acids, but the receptacles for performing the exposing step have substantially identical geometries. Following the exposing step, an amplification reaction for amplifying a region of the target nucleic acid is performed with each sample. The amplification reactions of the two assays are performed in receptacles having different geometries.
    Type: Application
    Filed: August 11, 2017
    Publication date: November 23, 2017
    Inventors: David A. BUSE, David OPALSKY, Jason F. RHUBOTTOM, Norbert D. HAGEN, Jennifer L. TIDD
  • Patent number: 9732374
    Abstract: A diagnostic system performs a first nucleic acid amplification reaction and a second, different nucleic acid amplification reaction. The diagnostic system includes a compartment configured to store at least a first bulk reagent container comprising a first bulk reagent for performing a sample preparation process, and a second bulk reagent container comprising a second bulk reagent for performing the first reaction. The system including a compartment configured to store at least one unit-dose pack comprising a plurality of unit-dose reagents for performing the second reaction. The diagnostic system is configured to perform the sample preparation process using the first bulk reagent on each of a plurality of samples provided to the diagnostic system. The system is configured to perform the first reaction using the second bulk reagent on a first sample subset, and perform the second reaction using the plurality of first unit-dose reagents on a second sample subset.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 15, 2017
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Patent number: 9446911
    Abstract: An apparatus for transferring receptacles between a plurality of receptacle-receiving structures disposed at different locations adjacent a transport track. The apparatus includes a receptacle carrier operatively engaged with the transport track and adapted to carry a receptacle and translate along the transport track. The receptacle carrier is further adapted to selectively stop at a transfer station with respect to any of the receptacles-receiving structures. The receptacle carrier includes a receptacle moving mechanism adapted to move a receptacle with respect to the receptacle carrier to move a receptacle into and/or out of the receptacle carrier. The apparatus further includes a transfer position locating system to automatically determine a location of a transfer position of the receptacle carrier with respect to each of the receptacle-receiving structures, thereby enabling the receptacle carrier to transfer a receptacle between the receptacle carrier and the receptacle-receiving structures.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: September 20, 2016
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Stefan Habrich, Norbert D. Hagen, Olaf Hörger, Byron J. Knight, David Opalsky, Jason F. Rhubottom, Heiko Sayer, Harald Thahedl