Patents by Inventor Jason Fang

Jason Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120690
    Abstract: According to an aspect, there is provided an electrical socket system comprising: an electrical socket comprising at least one temperature sensor; and a controller configured to monitor a temperature sensed by the temperature sensor, wherein the controller is configured to: determine a temperature gradient of the temperature with respect to time; determine if the temperature gradient exceeds a threshold gradient value; and trigger an alarm event if it is determined that the temperature gradient exceeds the threshold gradient value.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Keith Turner, Neil Brown, Jason Yu, Rick Fang
  • Patent number: 11945204
    Abstract: An elastomeric article for sealing a container includes an elastomeric body having an external sidewall surface and an external crown surface and a first fluoropolymer film layer having an internal surface and an external surface. The internal surface of the first fluoropolymer film layer is laminated to an entirety of the external sidewall and crown surfaces of the elastomeric body. The external crown surface of the first fluoropolymer film layer includes a drug contact surface configured to contact a drug contained in the container and the external sidewall surface including a sealing surface for contacting an interior surface of the container. The external surface of the first fluoropolymer film layer is substantially free of striations.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: April 2, 2024
    Assignee: West Pharmaceutical Services, Inc.
    Inventors: Jason Krizan, Douglas R. Duriez, Liang Fang, Kerry Drake
  • Patent number: 10553900
    Abstract: A precursor composition of a gel electrolyte is provided, which includes (1) meta-stable nitrogen-containing polymer, (2) gelling promoter, (3) carbonate compound, and (4) metal salt. The (1) meta-stable nitrogen-containing polymer is formed by reacting (a) nitrogen-containing heterocyclic compound with (b) maleimide compound, wherein (a) nitrogen-containing heterocyclic compound and (b) maleimide compound have a molar ratio of 1:0.1 to 1:10.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: February 4, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yueh-Wei Lin, Jason Fang, Wei-Hsin Wu, Chung-Hsiang Chao, Chih-Ching Chang
  • Patent number: 10411257
    Abstract: An electrolyte is provided, which includes (a) 100 parts by weight of oxide-based solid state inorganic electrolyte, (b) 20 to 70 parts by weight of [Li(—OR1)n?OR2]Y, wherein R1 is C1-4 alkylene group, R2 is C1-4 alkyl group, n is 2 to 100, and Y is PF6?, BF4?, AsF6?, SbF6?, ClO4?, AlCl4?, GaCl4?, NO3?, C(SO2CF3)3?, N(SO2CF3)2?, SCN?, CF3CF2SO3?, C6F5SO3?, CF3CO2?, SO3F?, B(C6H5)4?, CF3SO3?, or a combination thereof, (c) 1 to 10 parts by weight of nano oxide, and (d) 1 to 20 parts by weight of binder. The electrolyte can be disposed between a positive electrode and a negative electrode to form a battery.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 10, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Ching Chang, Jason Fang, Wei-Hsin Wu, Chung-Hsiang Chao, Chia-Erh Liu
  • Patent number: 10230096
    Abstract: An electrode is provided, which includes a sulfur- and carbon-containing layer having a carbon material, a sulfur material, and a binder. A sulfur content at a core part of the sulfur- and carbon-containing layer is gradually reduced to a sulfur content at two side surfaces of the sulfur- and carbon-containing layer. The electrode may serve as a positive electrode of a battery. The battery also includes a negative electrode, and an electrolyte liquid between the positive electrode and the negative electrode.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 12, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chia-Nan Lin, Jason Fang, Chih-Ching Chang, Chun-Lung Li
  • Publication number: 20180183055
    Abstract: An electrolyte is provided, which includes (a) 100 parts by weight of oxide-based solid state inorganic electrolyte, (b) 20 to 70 parts by weight of [Li(—OR1)n?OR2]Y, wherein R1 is C1-4 alkylene group, R2 is C1-4 alkyl group, n is 2 to 100, and Y is PF6?, BF4?, AsF6?, SbF6?, ClO4?, AlCl4?, GaCl4?, NO3?, C(SO2CF3)3?, N(SO2CF3)2?, SCN?, CF3CF2SO3?, C6F5SO3?, CF3CO2?, SO3F?, B(C6H5)4?, CF3SO3?, or a combination thereof, (c) 1 to 10 parts by weight of nano oxide, and (d) 1 to 20 parts by weight of binder. The electrolyte can be disposed between a positive electrode and a negative electrode to form a battery.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 28, 2018
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Ching CHANG, Jason FANG, Wei-Hsin WU, Chung-Hsiang CHAO, Chia-Erh LIU
  • Publication number: 20180019497
    Abstract: nA precursor composition of a gel electrolyte is provided, which includes (1) meta-stable nitrogen-containing polymer, (2) gelling promoter, (3) carbonate compound, and (4) metal salt. The (1) meta-stable nitrogen-containing polymer is formed by reacting (a) nitrogen-containing heterocyclic compound with (b) maleimide compound, wherein (a) nitrogen-containing heterocyclic compound and (b) maleimide compound have a molar ratio of 1:0.1 to 1:10.
    Type: Application
    Filed: August 29, 2016
    Publication date: January 18, 2018
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yueh-Wei LIN, Jason FANG, Wei-Hsin WU, Chung-Hsiang CHAO, Chih-Ching CHANG
  • Publication number: 20170162861
    Abstract: An electrode is provided, which includes a sulfur- and carbon-containing layer having a carbon material, a sulfur material, and a binder. A sulfur content at a core part of the sulfur- and carbon-containing layer is gradually reduced to a sulfur content at two side surfaces of the sulfur- and carbon-containing layer. The electrode may serve as a positive electrode of a battery. The battery also includes a negative electrode, and an electrolyte liquid between the positive electrode and the negative electrode.
    Type: Application
    Filed: December 30, 2015
    Publication date: June 8, 2017
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chia-Nan LIN, Jason FANG, Chih-Ching CHANG, Chun-Lung LI
  • Publication number: 20160190580
    Abstract: A battery electrode paste composition containing a silane coupling agent-modified active substance is provided. The battery electrode paste composition includes a silane coupling agent-modified active substance, a conductive additive, an adhesive, and a maleimide additive. The composition containing the silane coupling agent-modified active substance may provide better battery safety and longer cycle life.
    Type: Application
    Filed: December 30, 2015
    Publication date: June 30, 2016
    Inventors: Jing-Pin Pan, Hung-Chun Wu, Jason Fang, Jen-Jeh Lee, Tsung-Hsiung Wang, Chen-Chung Chen, Ting-Ju Yeh, Yu-Han Li, Guan-Lin Lai, Jen-Chih Lo, Jung-Mu Hsu, Chang-Rung Yang
  • Patent number: 9136516
    Abstract: A separator substrate include a substrate having a bulk portion and a surface portion, the surface portion having at least one porous area with a net charge; and ionic particles coupling to at least a part of the at least one porous area. The ionic particles have a net charge of an opposite sign to the net charge of the at least one porous area. The coupling between the part of the at least one porous area and the ionic particles may result in at least one of a good electrochemical performance, chemical stability, thermal stability, wettability, and mechanical strength of the separator substrate.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 15, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Jason Fang, Li-Duan Tsai, Yueh-Wei Lin, Cheng-Liang Cheng
  • Publication number: 20120171576
    Abstract: A non-aqueous electrolyte including a lithium salt, an organic solvent, and an electrolyte additive is provided. The electrolyte additive is a meta-stable state nitrogen-containing polymer formed by reacting Compound (A) and Compound (B). Compound (A) is a monomer having a reactive terminal functional group. Compound (B) is a heterocyclic amino aromatic derivative as an initiator. A molar ratio of Compound (A) to Compound (B) is from 10:1 to 1:10. A lithium secondary battery containing the non-aqueous electrolyte is further provided. The non-aqueous electrolyte of this disclosure has a higher decomposition voltage than a conventional non-aqueous electrolyte, such that the safety of the battery during overcharge or at high temperature caused by short-circuit current is improved.
    Type: Application
    Filed: May 19, 2011
    Publication date: July 5, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Yueh-Wei Lin, Jason Fang, Cheng-Liang Cheng, Jing-Pin Pan, Tsung-Hsiung Wang
  • Publication number: 20120172593
    Abstract: A meta-stable state nitrogen-containing polymer formed by reacting Compound (A) and Compound (B) is described. Compound (A) is a monomer having a reactive terminal functional group. Compound (B) is a heterocyclic amino aromatic derivative as an initiator. The molar ratio of Compound (A) to Compound (B) is from 10:1 to 1:10. The meta-stable state nitrogen-containing polymer has a variance less than 2% in its narrow molecular weight distribution after being retained at 55° C. for one month.
    Type: Application
    Filed: May 17, 2011
    Publication date: July 5, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Yueh-Wei Lin, Jason Fang, Cheng-Liang Cheng, Jing-Pin Pan, Tsung-Hsiung Wang
  • Publication number: 20120171573
    Abstract: A separator substrate include a substrate having a bulk portion and a surface portion, the surface portion having at least one porous area with a net charge; and ionic particles coupling to at least a part of the at least one porous area. The ionic particles have a net charge of an opposite sign to the net charge of the at least one porous area. The coupling between the part of the at least one porous area and the ionic particles may result in at least one of a good electrochemical performance, chemical stability, thermal stability, wettability, and mechanical strength of the separator substrate.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 5, 2012
    Inventors: Jason Fang, Li-Duan Tsai, Yueh-Wei Lin, Cheng-Liang Cheng
  • Patent number: 6585435
    Abstract: An improved membrane keyboard includes a bottom layer, a second conductive membrane layer located above the bottom layer having an output section extended from one end thereof at a selected location linking to an interrupt device, an insulation layer located above the second conductive membrane layer, a first conductive membrane layer located above the insulation layer, a top layer located above the first conductive membrane layer having a jutting section formed at one end with the top layer bonding to the bottom layer and forming an opening end at the jutting section, and a button key layer located between the first conductive membrane layer and the top layer.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: July 1, 2003
    Inventor: Jason Fang
  • Publication number: 20030044216
    Abstract: An improved membrane keyboard includes a bottom layer, a second conductive membrane layer located above the bottom layer having an output section extended from one end thereof at a selected location linking to an interrupt device, an insulation layer located above the second conductive membrane layer, a first conductive membrane layer located above the insulation layer, a top layer located above the first conductive membrane layer having a jutting section formed at one end with the top layer bonding to the bottom layer and forming an opening end at the jutting section, and a button key layer located between the first conductive membrane layer and the top layer.
    Type: Application
    Filed: September 5, 2001
    Publication date: March 6, 2003
    Inventor: Jason Fang