Patents by Inventor Jason Graetz

Jason Graetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210386059
    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99 wt % of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.
    Type: Application
    Filed: November 6, 2020
    Publication date: December 16, 2021
    Inventors: Adam GROSS, Andrew NOWAK, Ashley DUSTIN, Jason GRAETZ, John VAJO
  • Patent number: 11165083
    Abstract: According to an embodiment of the present disclosure, a method of controlling a rate of hydrogen release from a decomposition reaction of a hydrogen carrier includes: relating the rate to a temperature and a composition of the metastable hydrogen carrier; determining the composition of the metastable hydrogen carrier; and adjusting the temperature according to the relating of the rate and the determining of the composition.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 2, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Jason A. Graetz, John J. Vajo
  • Patent number: 11101479
    Abstract: A system includes a canister and a fuel cell. The canister defines an internal volume configured to have a hydride bed positioned therein. The canister includes at least 1.0 kWH/kg of energy based on a heating value of 120 kJ/g of hydrogen present. The hydride bed includes lithium aluminum hydride, aluminum hydride, or a combination thereof. The hydride bed is configured to release hydrogen gas when heated to a predetermined temperature. The fuel cell is configured to receive the hydrogen gas from the canister and to use the hydrogen gas as fuel to produce power for a load.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 24, 2021
    Assignee: The Boeing Company
    Inventors: Jason Graetz, Adam E. Sorensen, John J. Vajo
  • Patent number: 11072713
    Abstract: Some variations provide an anti-fouling segmented copolymer composition comprising: (a) one or more first soft segments selected from fluoropolymers; (b) one or more second soft segments selected from polyesters or polyethers; (c) one or more isocyanate species possessing an isocyanate functionality of 2 or greater, or a reacted form thereof; (d) one or more polyol or polyamine chain extenders or crosslinkers, or a reacted form thereof; and (e) a fluid additive selectively disposed in the first soft segments or in the second soft segments. Other variations provide an anti-fouling segmented copolymer precursor composition comprising a fluid additive precursor selectively disposed in the first soft segments or in the second soft segments, wherein the fluid additive precursor includes a protecting group. The anti-fouling segmented copolymer composition may be present in an anti-ice coating, an anti-bug coating, an anti-friction coating, an energy-transfer material, or an energy-storage material, for example.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 27, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, April R. Rodriguez, Jason A. Graetz, Adam F. Gross
  • Patent number: 11050075
    Abstract: In some variations, a hydrogen-storage material formulation comprises: a solid hydrogen-storage material containing at least one metal and hydrogen that is bonded with the metal; and a liquid electrolyte that is ionically conductive for at least one ion derived from the hydrogen-storage material. The liquid electrolyte may be from 5 wt % to about 20 wt % of the hydrogen-storage material formulation, for example. Many materials are possible for both the hydrogen-storage material as well as the liquid electrolyte. The hydrogen-storage material has a higher hydrogen evolution rate in the presence of the liquid electrolyte compared to a hydrogen-storage material without the liquid electrolyte. This is experimentally demonstrated with a destabilized metal hydride, MgH2/Si system, incorporating a LiI—KI—CsI ternary eutectic salt as the liquid electrolyte. Inclusion of the liquid electrolyte gives a ten-fold increase in H2 evolution rate at 250° C., reaching 3.5 wt % hydrogen released in only 7 hours.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 29, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: John J. Vajo, Jason A. Graetz, Channing Ahn, Dan Addison, Hongjin Tan, Jasim Uddin
  • Patent number: 11034846
    Abstract: This disclosure describes incorporation of a liquid additive within one or more phases of a multiphase polymer coating. The structure of the microphase-separated network provides reservoirs for liquid in discrete and/or continuous phases. Some variations provide an anti-fouling segmented copolymer composition comprising: (a) one or more first soft segments selected from fluoropolymers; (b) one or more second soft segments selected from polyesters or polyethers; (c) one or more isocyanate species; (d) one or more polyol or polyamine chain extenders or crosslinkers; and (e) a liquid additive disposed in the first soft segments and/or the second soft segments. The first soft segments and the second soft segments are microphase-separated on a microphase-separation length scale from 0.1 microns to 500 microns. These solid/liquid hybrid materials improve physical properties associated with the coating in applications such as anti-fouling (e.g.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: June 15, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, April R. Rodriguez, Jason A. Graetz, Adam F. Gross
  • Publication number: 20210047522
    Abstract: A crystalline titanium and magnesium compound having an X-ray diffraction pattern having interplanar spacing (d-spacing) values at about 5.94, 3.10, 2.97, 2.10, 1.98, 1.82, and 1.74±0.1 angstroms may be used in protective coatings for metal or metal alloy substrates. The coatings exhibit excellent corrosion resistances and provide corrosion protection equal to or better than typical non-chromate coatings.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Inventors: John J. VAJO, Jason Graetz, Alain A. Adjorlolo
  • Patent number: 10892505
    Abstract: According to an embodiment of the present disclosure, a power management system (e.g., a power management for a fuel cell or a fuel cell system) includes a fuel cell to generate an electrical power output; a metastable hydrogen carrier to supply hydrogen to the fuel cell; a heater coupled with the metastable hydrogen carrier; and a controller coupled to the heater to control a rate of hydrogen release from the metastable hydrogen carrier. A method of operating a fuel cell system includes controlling an electrical power input to a heater utilizing a controller; heating a metastable hydrogen carrier to a temperature by the heater and to generate hydrogen to feed a fuel cell. The heater is coupled to the controller, and the controller controls the electrical power input to the heater according to a relationship between a rate of hydrogen release and the temperature and a composition of the metastable hydrogen carrier.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 12, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Cullen M. Quine, John J. Vajo, Jason A. Graetz
  • Publication number: 20200411888
    Abstract: A system includes a canister and a fuel cell. The canister defines an internal volume configured to have a hydride bed positioned therein. The canister includes at least 1.0 kWH/kg of energy based on a heating value of 120 kJ/g of hydrogen present. The hydride bed includes lithium aluminum hydride, aluminum hydride, or a combination thereof. The hydride bed is configured to release hydrogen gas when heated to a predetermined temperature. The fuel cell is configured to receive the hydrogen gas from the canister and to use the hydrogen gas as fuel to produce power for a load.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: The Boeing Company
    Inventors: Jason Graetz, Adam E. Sorensen, John J. Vajo
  • Patent number: 10876025
    Abstract: Some variations provide a composition comprising: a first solid material and a second solid material that are chemically distinct and microphase-separated; and at least one liquid selectively absorbed into either of the first solid material or the second solid material. The first and second solid materials are preferably present as phase-separated regions of a copolymer, such as in a segmented copolymer (e.g., a urethane-urea copolymer). The liquid may be a freezing-point depressant for water. For example, the liquid may be selected from methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, or glycerol. The liquid may be a lubricant. For example, the liquid may be selected from fluorinated oils, siloxanes, petroleum-derived oils, mineral oil, or plant-derived oils. The liquid may consist of or include water. The liquid may be an electrolyte. For example, the liquid may be selected from poly(ethylene glycol), ionic liquids, dimethyl carbonate, diethyl carbonate, or methyl ethyl dicarbonate.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 29, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, April R. Rodriguez, Jason A. Graetz, Adam F. Gross
  • Patent number: 10828618
    Abstract: Some variations provide an alkali metal or alkaline earth metal atom source (e.g., vapor cell) with a solid ionic conductor and a mixed ion-electron conductor electrode. Mixed ion-electron conductor electrodes are used as efficient sources and/or as sinks for alkali metal or alkaline earth metal atoms, thus enabling electrical control over metal atom content in the vapor cell. Some variations provide a vapor-cell system comprising: a vapor-cell region configured to allow a vapor-cell optical path into a vapor-cell vapor phase; a first electrode containing an mixed ion-electron conductor that is conductive for an ion of at least one element selected from Rb, Cs, Na, K, or Sr; a second electrode electrically isolated from the first electrode; and an ion-conducting layer between the first electrode and the second electrode. The ion-conducting layer is ionically conductive for at least one ionic species selected from Rb+, Cs+, Na+, K+, or Sr2+.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 10, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, Jason A. Graetz
  • Patent number: 10775748
    Abstract: Some variations provide an alkali metal or alkaline earth metal vapor cell with a solid ionic conductor and intercalable-compound electrodes. The intercalable-compound electrodes are used as efficient sources and/or as sinks for alkali metal or alkaline earth metal atoms, thus enabling electrical control over metal atom content in the vapor cell. Some variations provide a vapor-cell system comprising: a vapor-cell region configured to allow a vapor-cell optical path into a vapor-cell vapor phase; a first electrode; a second electrode electrically isolated from the first electrode, wherein the second electrode contains an intercalable compound intercalated by an element selected from Rb, Cs, Na, K, or Sr; and an ion-conducting layer between the first electrode and the second electrode. The ion-conducting layer is ionically conductive for at least one ionic species selected from Rb+, Cs+, Na+, K+, or Sr2+. The intercalable compound is preferably a carbonaceous material, such as graphite.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 15, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, Adam F. Gross, Matthew T. Rakher, Logan D. Sorenson, John J. Vajo, Jason A. Graetz, Russell Mott, Danny Kim
  • Publication number: 20200277510
    Abstract: Some variations provide a multiphase polymer composition comprising a first polymer material and a second polymer material that are chemically distinct, wherein the first polymer material and the second polymer material are microphase-separated on a microphase-separation length scale from about 0.1 microns to about 500 microns, wherein the multiphase polymer composition comprises first solid functional particles selectively dispersed within the first polymer material, and wherein the first solid functional particles are chemically distinct from the first polymer material and the second polymer material. Some embodiments provide an anti-corrosion composition comprising first corrosion-inhibitor particles or precursors selectively dispersed within the first polymer material, wherein the multiphase polymer composition optionally further comprises second corrosion-inhibitor particles or precursors selectively dispersed within the second polymer material.
    Type: Application
    Filed: May 17, 2020
    Publication date: September 3, 2020
    Inventors: Ashley M. DUSTIN, Andrew P. NOWAK, Jason A. GRAETZ, John J. VAJO, April R. RODRIGUEZ
  • Publication number: 20200261976
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: John H. MARTIN, Tobias A. SCHAEDLER, Brennan YAHATA, Jacob M. HUNDLEY, Jason A. GRAETZ, Adam F. GROSS, William CARTER
  • Patent number: 10711351
    Abstract: An article includes an electroless deposited aluminum layer. The aluminum layer is deposited in an electroless plating composition. The composition includes an aluminum ionic liquid, a reducing agent, and an additive selected from the group consisting of a catalyst, an alloying element, and a combination thereof.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: July 14, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Joanna A. Kolodziejska, John J. Vajo, Jason A. Graetz, Christopher S. Roper
  • Publication number: 20200216963
    Abstract: Aspects of the present disclosure provide titanium-based coatings and methods for making titanium-based coatings on surfaces. In at least one aspect, a coating includes an oxygen content, a fluorine content, a titanium content, and a sodium content. In one or more additional aspects, a coating includes titanium dioxide and Na5Ti3F14. In one or more additional aspects, a method of making a titanium-based coating includes contacting a substrate with a composition that includes from about 0.01 M to about 0.8 M of a titanium fluoride, from about 0.01 M to about 2 M of a sodium salt, and from about 0.1 M to about 1.5 M of a fluorine scavenger.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: John J. Vajo, Alain A. ADJORLOLO, Jason A. GRAETZ
  • Patent number: 10689542
    Abstract: Some variations provide a multiphase polymer composition comprising a first polymer material and a second polymer material that are chemically distinct, wherein the first polymer material and the second polymer material are microphase-separated on a microphase-separation length scale from about 0.1 microns to about 500 microns, wherein the multiphase polymer composition comprises first solid functional particles selectively dispersed within the first polymer material, and wherein the first solid functional particles are chemically distinct from the first polymer material and the second polymer material. Some embodiments provide an anti-corrosion composition comprising first corrosion-inhibitor particles or precursors selectively dispersed within the first polymer material, wherein the multiphase polymer composition optionally further comprises second corrosion-inhibitor particles or precursors selectively dispersed within the second polymer material.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: June 23, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Ashley M. Dustin, Andrew P. Nowak, Jason A. Graetz, John J. Vajo, April R. Rodriguez
  • Patent number: 10682699
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: June 16, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Tobias A. Schaedler, Brennan Yahata, Jacob M. Hundley, Jason A. Graetz, Adam F. Gross, William Carter
  • Patent number: 10545461
    Abstract: Some variations provide an alkali metal or alkaline earth metal vapor cell with a solid ionic conductor and intercalable-compound electrodes. The intercalable-compound electrodes are used as efficient sources and/or as sinks for alkali metal or alkaline earth metal atoms, thus enabling electrical control over metal atom content in the vapor cell. Some variations provide a vapor-cell system comprising: a vapor-cell region configured to allow a vapor-cell optical path into a vapor-cell vapor phase; a first electrode containing an intercalable compound capable of being intercalated by at least one element selected from Rb, Cs, Na, K, or Sr; a second electrode electrically isolated from the first electrode; and an ion-conducting layer between the first electrode and the second electrode. The ion-conducting layer is ionically conductive for at least one ionic species selected from Rb+, Cs+, Na+, K+, or Sr2+. The first intercalable compound is preferably a carbonaceous material, such as graphite.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 28, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, Adam F. Gross, Matthew T. Rakher, Logan D. Sorenson, John J. Vajo, Jason A. Graetz, Russell Mott, Danny Kim
  • Patent number: 10371753
    Abstract: In some variations, a method of real-time monitoring of battery capacity comprises correlating electrode open-circuit voltage with electrode state of charge for a selected electrode; compiling a look-up table to correlate the electrode open-circuit voltage with the electrode capacity at different values of the active-material capacity; during real-time operation, identifying first and second times at which battery terminal voltages are approximated as battery open-circuit voltages; and calculating battery capacity based on the difference in battery open-circuit voltages at the first and second times, current integration, and the look-up table. No reference electrode is needed, and a complete battery charge/discharge is not necessary to determine the capacity. This technique can therefore be implemented on-board and in real time to provide reliable capacity estimation even as the battery ages.
    Type: Grant
    Filed: December 20, 2014
    Date of Patent: August 6, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Shuoqin Wang, John Wang, Souren Soukiazian, Jason A. Graetz