Patents by Inventor Jason Heger
Jason Heger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250123672Abstract: Methods and systems are disclosed for detecting whether a wearable device is being worn by a user. The system transmits a radio signal from a first communication device of a wearable device to a second communication device of the wearable device and measures a signal strength associated with the radio signal received by the second communication device. The system compares the signal strength to a threshold value and generates an indication of a wear status associated with the wearable device based on comparing the signal strength to the threshold value.Type: ApplicationFiled: December 18, 2024Publication date: April 17, 2025Inventors: Jason Heger, Dunxu Hu, Eric Nachtigall, Gerald Nilles, Ugur Olgun, Praveen Babu Vadivelu
-
Publication number: 20250097849Abstract: Systems, methods, devices, computer readable media, and other various embodiments are described for location management processes in wearable electronic devices. Performance of such devices is improved with reduced time to first fix of location operations in conjunction with low-power operations. In one embodiment, low-power circuitry manages high-speed circuitry and location circuitry to provide location assistance data from the high-speed circuitry to the low-power circuitry automatically on initiation of location fix operations as the high-speed circuitry and location circuitry are booted from low-power states. In some embodiments, the high-speed circuitry is returned to a low-power state prior to completion of a location fix and after capture of content associated with initiation of the location fix. In some embodiments, high-speed circuitry is booted after completion of a location fix to update location data associated with content.Type: ApplicationFiled: December 5, 2024Publication date: March 20, 2025Inventors: Yu Jiang Tham, John James Robertson, Gerald Nilles, Jason Heger, Praveen Babu Vadivelu
-
Publication number: 20250094370Abstract: Eyewear including a frame having a first side and a second side, a first temple extending from the first side of the frame, a second temple extending from the second side of the frame, electronic components, a first system on a chip (SoC) adjacent the first side of the frame coupled to a first set of the electronic components, and a second system on a chip adjacent the second side, the second SoC coupled to the first SoC and to a second set of the plurality of electronic components. Processing workloads are balanced between the first SoC and the second SoC by performing a first set of operations with the first SoC and performing a second set of operations with the second SoC.Type: ApplicationFiled: December 4, 2024Publication date: March 20, 2025Inventors: Praveen Babu Vadivelu, Jason Heger, Gerald Nilles, Alex Feinman, Dunxu Hu
-
Publication number: 20250093662Abstract: Eyewear device that includes two SoCs that share processing workload. Instead of using a single SoC located either on the left or right side of the eyewear device, the two SoCs have different assigned responsibilities to operate different devices and perform different processes to balance workload. In one example, the eyewear device utilizes a first SoC to operate all peripheral components, and a second SoC performing computational tasks. This is a low-risk architecture since the second SoC is not required to operate any of the peripherals, and it has low standby power since the second SoC can be fully shutdown in a low-power mode. The second SoC does not have any direct access to camera data, so an interprocessor communication bus continuously transmits camera buffer data for most augmented reality (AR) compute tasks. This configuration provides organized logistics to efficiently operate various features, and balanced power consumption.Type: ApplicationFiled: November 29, 2024Publication date: March 20, 2025Inventors: Jason Heger, Gerald Nilles, Patrick Timothy McSweeney Simons
-
Publication number: 20250055179Abstract: Examples include a wearable device having a frame, a temple and onboard electronics components. The frame can optionally configured to hold one or more optical elements. T temple can optionally connected to the frame at a joint such that the temple is disposable between a collapsed condition and a wearable condition in which the wearable device is wearable by a user to hold the one or more optical elements within user view. The onboard electronics components can be carried by at least one of the frame and the temple and can include a first antenna configured for cellular communication carried by the frame and a second antenna configured for cellular communication carried by one of the frame or the temple.Type: ApplicationFiled: October 24, 2024Publication date: February 13, 2025Inventors: Ugur Olgun, Jason Heger, Praveen Babu Vadivelu, Jordan Wakser
-
Patent number: 12216519Abstract: Methods and systems are disclosed for detecting whether a wearable device is being worn by a user. The system transmits a radio signal from a first communication device of a wearable device to a second communication device of the wearable device and measures a signal strength associated with the radio signal received by the second communication device. The system compares the signal strength to a threshold value and generates an indication of a wear status associated with the wearable device based on comparing the signal strength to the threshold value.Type: GrantFiled: August 17, 2022Date of Patent: February 4, 2025Assignee: Snap Inc.Inventors: Jason Heger, Dunxu Hu, Eric Nachtigall, Gerald Nilles, Ugur Olgun, Praveen Babu Vadivelu
-
Patent number: 12207199Abstract: Systems, methods, devices, computer readable media, and other various embodiments are described for location management processes in wearable electronic devices. Performance of such devices is improved with reduced time to first fix of location operations in conjunction with low-power operations. In one embodiment, low-power circuitry manages high-speed circuitry and location circuitry to provide location assistance data from the high-speed circuitry to the low-power circuitry automatically on initiation of location fix operations as the high-speed circuitry and location circuitry are booted from low-power states. In some embodiments, the high-speed circuitry is returned to a low-power state prior to completion of a location fix and after capture of content associated with initiation of the location fix. In some embodiments, high-speed circuitry is booted after completion of a location fix to update location data associated with content.Type: GrantFiled: September 5, 2023Date of Patent: January 21, 2025Assignee: Snap Inc.Inventors: Yu Jiang Tham, John James Robertson, Gerald Nilles, Jason Heger, Praveen Babu Vadivelu
-
Patent number: 12174379Abstract: Eyewear device that includes two SoCs that share processing workload. Instead of using a single SoC located either on the left or right side of the eyewear device, the two SoCs have different assigned responsibilities to operate different devices and perform different processes to balance workload. In one example, the eyewear device utilizes a first SoC to operate all peripheral components, and a second SoC performing computational tasks. This is a low-risk architecture since the second SoC is not required to operate any of the peripherals, and it has low standby power since the second SoC can be fully shutdown in a low-power mode. The second SoC does not have any direct access to camera data, so an interprocessor communication bus continuously transmits camera buffer data for most augmented reality (AR) compute tasks. This configuration provides organized logistics to efficiently operate various features, and balanced power consumption.Type: GrantFiled: October 14, 2021Date of Patent: December 24, 2024Assignee: Snap Inc.Inventors: Jason Heger, Gerald Nilles, Patrick Timothy McSweeney Simons
-
Patent number: 12166274Abstract: Examples include a wearable device having a frame, a temple and onboard electronics components. The frame can optionally configured to hold one or more optical elements. T temple can optionally connected to the frame at a joint such that the temple is disposable between a collapsed condition and a wearable condition in which the wearable device is wearable by a user to hold the one or more optical elements within user view. The onboard electronics components can be carried by at least one of the frame and the temple and can include a first antenna configured for cellular communication carried by the frame and a second antenna configured for cellular communication carried by one of the frame or the temple.Type: GrantFiled: August 18, 2022Date of Patent: December 10, 2024Assignee: Snap Inc.Inventors: Ugur Olgun, Jason Heger, Praveen Babu Vadivelu, Jordan Wakser
-
Patent number: 12164449Abstract: Eyewear including a frame having a first side and a second side, a first temple extending from the first side of the frame, a second temple extending from the second side of the frame, electronic components, a first system on a chip (SoC) adjacent the first side of the frame coupled to a first set of the electronic components, and a second system on a chip adjacent the second side, the second SoC coupled to the first SoC and to a second set of the plurality of electronic components. Processing workloads are balanced between the first SoC and the second SoC by performing a first set of operations with the first SoC and performing a second set of operations with the second SoC.Type: GrantFiled: August 24, 2021Date of Patent: December 10, 2024Assignee: Snap Inc.Inventors: Praveen Babu Vadivelu, Jason Heger, Gerald Nilles, Alex Feinman, Dunxu Hu
-
Patent number: 12105553Abstract: An electronic eyewear device includes first and second systems on a chip (SoCs) having independent time bases that are synchronized by generating a common clock signal from a clock generator of the first SoC and simultaneously applying the common clock signal to a first counter of the first SoC and a second counter of the second SoC whereby the first counter and the second counter count clock edges of the common clock. The clock counts are shared through an interface between the first SoC and the second SoC and compared to each other. When the clock counts are different, a clock count of the first counter or the second counter is adjusted to cause the clock counts to match each other. The adjusted clock count is synchronized to the respective clocks of the first and second SoCs, thus synchronizing the first and second SoCs to each other.Type: GrantFiled: August 22, 2023Date of Patent: October 1, 2024Assignee: Snap Inc.Inventors: Samuel Ahn, Jason Heger, Dmitry Ryuma
-
Publication number: 20240280355Abstract: A system for correcting for frame bending of an augmented reality system is provided. A combination of strain gauges and visual inertial odometry is used to determine strains in the frame. An initial model between strain gauge measurements and actual frame spatial relationships is based on finite element analysis or calibration. During an initial visual inertial odometry data calculation phase, the augmented reality system calculates bending or strains of the frame using strain data from the strain gauges mounted to the frame. Subsequent visual inertial odometry data calculations are used to generate a corrected frame model of the frame. The corrected frame model is used for calculating corrected tracking data and corrected virtual overlays that are used to generate virtual overlays used in an AR experience provided by the augmented reality system.Type: ApplicationFiled: February 22, 2023Publication date: August 22, 2024Inventors: Matthias Kalkgruber, Tiago Miguel Pereira Torres, Chao Chen, Jason Heger, John Recchio, Mark Kraz, Michael Ryner
-
Publication number: 20240275937Abstract: Eyewear devices that include two SoCs that share processing workload. Instead of using a single SoC located either on the left or right side of the eyewear devices, the two SoCs have different assigned responsibilities to operate different devices and perform different processes to balance workload. In one example, the eyewear device utilizes a first SoC to operate a first color camera, a second color camera, a first display, and a second display. The first SoC and a second SoC are configured to selectively operate a first and second computer vision (CV) camera algorithms. The first SoC is configured to perform visual odometry (VIO), track hand gestures of the user, and provide depth from stereo images. This configuration provides organized logistics to efficiently operate various features, and balanced power consumption.Type: ApplicationFiled: April 23, 2024Publication date: August 15, 2024Inventors: Jason Heger, Gerald Nilles, Dmitry Ryuma, Patrick Timothy McSweeney Simons, Daniel Wagner
-
Publication number: 20240251356Abstract: Systems, methods, devices, computer readable media, and other various embodiments are described for location management processes in wearable electronic devices. Performance of such devices is improved with reduced time to first fix of location operations in conjunction with low-power operations. In one embodiment, low-power circuitry manages high-speed circuitry and location circuitry to provide location assistance data from the high-speed circuitry to the low-power circuitry automatically on initiation of location fix operations as the high-speed circuitry and location circuitry are booted from low-power states. In some embodiments, the high-speed circuitry is returned to a low-power state prior to completion of a location fix and after capture of content associated with initiation of the location fix. In some embodiments, high-speed circuitry is booted after completion of a location fix to update location data associated with content.Type: ApplicationFiled: April 1, 2024Publication date: July 25, 2024Inventors: Yu Jiang Tham, John James Robertson, Gerald Nilles, Jason Heger, Praveen Babu Vadivelu
-
Patent number: 12002392Abstract: Eyewear including a projector having a variable feedback loop controlling a forward current delivered to a colored light source. The colored light source is configured to generate a colored light beam to generate a displayed image. The variable feedback loop in one example has a variable resistance to selectively generate a high brightness image when the eyewear is operated outside, or in a high ambient light setting, and to selectively generate a nominal brightness image when the eyewear is operated inside. A controller selectively controls the drive current delivered to the colored light source to control the brightness mode of the image.Type: GrantFiled: April 20, 2023Date of Patent: June 4, 2024Assignee: Snap Inc.Inventors: Jason Heger, Gerald Nilles
-
Patent number: 11997249Abstract: Eyewear devices that include two SoCs that share processing workload. Instead of using a single SoC located either on the left or right side of the eyewear devices, the two SoCs have different assigned responsibilities to operate different devices and perform different processes to balance workload. In one example, the eyewear device utilizes a first SoC to operate a first color camera, a second color camera, a first display, and a second display. The first SoC and a second SoC are configured to selectively operate a first and second computer vision (CV) camera algorithms. The first SoC is configured to perform visual odometry (VIO), track hand gestures of the user, and provide depth from stereo images. This configuration provides organized logistics to efficiently operate various features, and balanced power consumption.Type: GrantFiled: October 14, 2021Date of Patent: May 28, 2024Assignee: Snap Inc.Inventors: Jason Heger, Gerald Nilles, Dmitry Ryuma, Patrick Timothy Mcsweeney Simons, Daniel Wagner
-
Publication number: 20240171722Abstract: Eyewear including a sensor integrated into frame of eyewear. In one example, the sensor comprises a strain gauge, such as a metallic foil gauge, that is configured to sense and measure distortion of the frame when worn by a user and under different force profiles, by measuring a strain in the frame when bent. The measured strain by strain gauge is sensed by a processor, and the processor performs dynamic calibration of image processing based on the measured strain. The distortion measured by the strain gauge is used by the processor to correct calibration of the cameras, and the displays.Type: ApplicationFiled: January 30, 2024Publication date: May 23, 2024Inventors: Jason Heger, Russell Patton
-
Patent number: 11963105Abstract: Systems, methods, devices, computer readable media, and other various embodiments are described for location management processes in wearable electronic devices. Performance of such devices is improved with reduced time to first fix of location operations in conjunction with low-power operations. In one embodiment, low-power circuitry manages high-speed circuitry and location circuitry to provide location assistance data from the high-speed circuitry to the low-power circuitry automatically on initiation of location fix operations as the high-speed circuitry and location circuitry are booted from low-power states. In some embodiments, the high-speed circuitry is returned to a low-power state prior to completion of a location fix and after capture of content associated with initiation of the location fix. In some embodiments, high-speed circuitry is booted after completion of a location fix to update location data associated with content.Type: GrantFiled: February 10, 2023Date of Patent: April 16, 2024Assignee: Snap Inc.Inventors: Yu Jiang Tham, John James Robertson, Gerald Nilles, Jason Heger, Praveen Babu Vadivelu
-
Publication number: 20240085166Abstract: An eyewear device including a strain gauge sensor to determine when the eyewear device is manipulated by a user, such as being put on, taken off, and interacted with. A processor identifies a signature event based on sensor signals received from the strain gauge sensor and a data table of strain gauge sensor measurements corresponding to signature events. The processor controls the eyewear device as a function of the identified signature event, such as powering on a display of the eyewear device as the eyewear device is being put on a user's head, and then turning of the display when the eyewear device is removed from the user's head.Type: ApplicationFiled: September 12, 2022Publication date: March 14, 2024Inventors: Jason Heger, Matthias Kalkgruber, Erick Mendez Mendez
-
Patent number: 11917120Abstract: Eyewear including a sensor integrated into frame of eyewear. In one example, the sensor comprises a strain gauge, such as a metallic foil gauge, that is configured to sense and measure distortion of the frame when worn by a user and under different force profiles, by measuring a strain in the frame when bent. The measured strain by strain gauge is sensed by a processor, and the processor performs dynamic calibration of image processing based on the measured strain. The distortion measured by the strain gauge is used by the processor to correct calibration of the cameras, and the displays.Type: GrantFiled: September 24, 2021Date of Patent: February 27, 2024Assignee: SNAP INC.Inventors: Jason Heger, Russell Patton