Patents by Inventor Jason Humphrey

Jason Humphrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10493285
    Abstract: Systems and methods for multi-site cardiac stimulation are disclosed. The system includes an electrostimulation circuit to deliver electrostimulation to one or more candidate sites of at least one heart chamber. The system may sense a physiological signal including during electrostimulation of the heart, use the physiological signal to determine a first stimulation vector for electrostimulation at a first left ventricular (LV) site and a second stimulation vector for electrostimulation at a different second LV site, and determine a therapy mode including a first chronological order and a first timing offset between stimulations delivered according to the first and second stimulation vectors. The electrostimulation circuit may deliver electrostimulation to the heart in accordance with the first and second stimulation vectors and the therapy mode.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: December 3, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, David J. Ternes, Keith L. Herrmann, Sunipa Saha, Pratik K. Pandya, Jason Humphrey, David L. Perschbacher
  • Publication number: 20190083789
    Abstract: Systems and methods for managing heart failure are described. The system receives physiological information including a first HS signal corresponding to paced ventricular contractions and a second HS signal corresponding to intrinsic ventricular contractions. The system detects worsening heart failure (WHF) using the received physiological information. A signal analyzer circuit can generate a paced HS metric from the first HS signal and a sensed HS metric from the second HS signal, and determine a concordance indicator between the paced and the sensed HS metrics. In response to the detected WHF, the system can use the concordance indicator to generate a therapy adjustment indicator for adjusting electrostimulation therapy, or a worsening cardiac contractility indicator indicating the detected WHF is attributed to degrading myocardial contractility.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 21, 2019
    Inventors: Pramodsingh Hirasingh Thakur, Jason Humphrey, David J. Ternes, Qi An, Krzysztof Z. Siejko, Michael James Dufresne, Yinghong Yu
  • Publication number: 20190076655
    Abstract: Systems and methods for selecting one or more sites at or within at least one heart chamber for cardiac stimulation are disclosed. The system can include a physiologic sensor circuit to sense physiologic signals at two or more candidate stimulation sites. The system can generate respective activation timing indicators corresponding to the two or more candidate stimulation sites, and detect MI indicators indicating the presence of, or spatial proximity of each of the two or more candidate stimulation sites to a MI tissue. The system can use the activation timing indicators and the MI indicators to select at least one target stimulation site or to determine an electrostimulation vector. The system can display the selected target stimulation site to a user, or deliver electrostimulation to the patient at the target stimulation site or according to the determined electrostimulation vector.
    Type: Application
    Filed: November 14, 2018
    Publication date: March 14, 2019
    Inventors: Yinghong Yu, Martin McDaniel, Jason Humphrey, Qi An
  • Publication number: 20180361150
    Abstract: Systems and methods for monitoring and treating patients with heart failure (HF) are discussed. The system may sense cardiac signals, and receives information about patient physiological or functional conditions. A stimulation parameter table that includes recommended values of atrioventricular delay (AVD) or other timing parameters maybe created at a multitude of patient physiological or functional conditions. The system may periodically reassess patient physiological or functional conditions. A therapy programmer circuit may dynamically switch between left ventricular-only pacing and biventricular pacing, or switch between single site pacing and multisite pacing based on the patient condition. The therapy programmer circuit may adjust AVD and other timing parameters using the cardiac signal input and the stored stimulation parameter table. A HF therapy may be delivered according to the determined stimulation site, stimulation mode, and the stimulation timing.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Inventors: David J. Ternes, Yinghong Yu, Jason Humphrey, David L. Perschbacher, Michael James Dufresne, Adam MacEwen, Keith L. Herrmann
  • Publication number: 20180361162
    Abstract: Systems and methods for monitoring and treating patients with heart failure (HF) are discussed. The system may sense cardiac signals, and receives information about patient physiological or functional conditions. A stimulation parameter table that includes recommended values of atrioventricular delay (AVD) or other timing parameters maybe created at a multitude of patient physiological or functional conditions. The system may periodically reassess patient physiological or functional conditions. A therapy programmer circuit may dynamically switch between left ventricular-only pacing and biventricular pacing, or switch between single site pacing and multisite pacing based on the patient condition. The therapy programmer circuit may adjust AVD and other timing parameters using the cardiac signal input and the stored stimulation parameter table. A HF therapy may be delivered according to the determined stimulation site, stimulation mode, and the stimulation timing.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Inventors: David J. Ternes, Yinghong Yu, Jason Humphrey, David L. Perschbacher, Michael James Dufresne, Adam MacEwen, Keith L. Herrmann
  • Publication number: 20180361161
    Abstract: Systems and methods for monitoring and treating patients with heart failure (HF) are discussed. The system may sense cardiac signals, and receives information about patient physiological or functional conditions. A stimulation parameter table that includes recommended values of atrioventricular delay (AVD) or other timing parameters maybe created at a multitude of patient physiological or functional conditions. The system may periodically reassess patient physiological or functional conditions. A therapy programmer circuit may dynamically switch between left ventricular-only pacing and biventricular pacing, or switch between single site pacing and multisite pacing based on the patient condition. The therapy programmer circuit may adjust AVD and other timing parameters using the cardiac signal input and the stored stimulation parameter table. A HF therapy may be delivered according to the determined stimulation site, stimulation mode, and the stimulation timing.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Inventors: David J. Ternes, Yinghong Yu, Jason Humphrey, David L. Perschbacher, Michael James Dufresne, Adam MacEwen, Keith L. Herrmann
  • Patent number: 10155116
    Abstract: Systems and methods for selecting one or more sites at or within at least one heart chamber for cardiac stimulation are disclosed. The system can include a physiologic sensor circuit to sense physiologic signals at two or more candidate stimulation sites. The system can generate respective activation timing indicators corresponding to the two or more candidate stimulation sites, and detect MI indicators indicating the presence of, or spatial proximity of each of the two or more candidate stimulation sites to a MI tissue. The system can use the activation timing indicators and the MI indicators to select at least one target stimulation site or to determine an electrostimulation vector. The system can display the selected target stimulation site to a user, or deliver electrostimulation to the patient at the target stimulation site or according to the determined electrostimulation vector.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: December 18, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Martin McDaniel, Jason Humphrey, Qi An
  • Patent number: 10092761
    Abstract: Systems and methods for evaluating multiple candidate electrostimulation vectors for use in therapeutic cardiac stimulation are disclosed. The system can include a programmable electrostimulator circuit for delivering electrostimulation to one or more sites of a heart according to multiple candidate electrostimulation vectors. One or more physiologic sensors can detect resulting physiologic responses to the electrostimulation. A processor circuit can generate categories of indicators including therapy efficacy indicators, battery longevity indicators, or complication indicators using the sensed physiologic responses. The candidate electrostimulation vectors can be ranked according to the categories of indicators in specified orders.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: October 9, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Yinghong Yu, Pramodsingh Hirasingh Thakur, David L. Perschbacher, Jason Humphrey, Yi Zhang
  • Publication number: 20170348528
    Abstract: Systems and methods for multi-site cardiac stimulation are disclosed. The system includes an electrostimulation circuit to deliver electrostimulation to one or more candidate sites of at least one heart chamber. The system may sense a physiological signal including during electrostimulation of the heart, use the physiological signal to determine a first stimulation vector for electrostimulation at a first left ventricular (LV) site and a second stimulation vector for electrostimulation at a different second LV site, and determine a therapy mode including a first chronological order and a first timing offset between stimulations delivered according to the first and second stimulation vectors. The electrostimulation circuit may deliver electrostimulation to the heart in accordance with the first and second stimulation vectors and the therapy mode.
    Type: Application
    Filed: May 24, 2017
    Publication date: December 7, 2017
    Inventors: Yinghong Yu, David J. Ternes, Keith L. Herrmann, Sunipa Saha, Pratik K. Pandya, Jason Humphrey, David L. Perschbacher
  • Publication number: 20170021175
    Abstract: Systems and methods for selecting one or more sites at or within at least one heart chamber for cardiac stimulation are disclosed. The system can include a physiologic sensor circuit to sense physiologic signals at two or more candidate stimulation sites. The system can generate respective activation timing indicators corresponding to the two or more candidate stimulation sites, and detect MI indicators indicating the presence of, or spatial proximity of each of the two or more candidate stimulation sites to a MI tissue. The system can use the activation timing indicators and the MI indicators to select at least one target stimulation site or to determine an electrostimulation vector. The system can display the selected target stimulation site to a user, or deliver electrostimulation to the patient at the target stimulation site or according to the determined electrostimulation vector.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 26, 2017
    Inventors: Yinghong Yu, Martin McDaniel, Jason Humphrey, Qi An
  • Publication number: 20170001011
    Abstract: Systems and methods for evaluating multiple candidate electrostimulation vectors for use in therapeutic cardiac stimulation are disclosed. The system can include a programmable electrostimulator circuit for delivering electrostimulation to one or more sites of a heart according to multiple candidate electrostimulation vectors. One or more physiologic sensors can detect resulting physiologic responses to the electrostimulation. A processor circuit can generate categories of indicators including therapy efficacy indicators, battery longevity indicators, or complication indicators using the sensed physiologic responses. The candidate electrostimulation vectors can be ranked according to the categories of indicators in specified orders.
    Type: Application
    Filed: June 20, 2016
    Publication date: January 5, 2017
    Inventors: Qi An, Yinghong Yu, Pramodsingh Hirasingh Thakur, David L. Perschbacher, Jason Humphrey, Yi Zhang
  • Patent number: 8236890
    Abstract: Aqueous emulsions are disclosed of a gel or gel paste containing a silicone elastomer from the reaction an organohydrogensiloxane having at least two SiH containing cyclosiloxane rings in its molecule and a compound having at least two aliphatic unsaturated groups in its molecule.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 7, 2012
    Assignee: Dow Corning Corporation
    Inventors: Shaow Burn Lin, Jason Humphrey
  • Publication number: 20100209367
    Abstract: Aqueous emulsions are disclosed of a gel or gel paste containing a silicone elastomer from the reaction an organohydrogensiloxane having at least two SiH containing cyclosiloxane rings in its molecule and a compound having at least two aliphatic unsaturated groups in its molecule.
    Type: Application
    Filed: September 18, 2008
    Publication date: August 19, 2010
    Inventors: Shaow Burn Lin, Jason Humphrey