Patents by Inventor Jason J. Saredy

Jason J. Saredy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7930923
    Abstract: A nanocrystalline ITO thin film formed on a quartz crystal microbalance (QCM) facilitates detection of gaseous compounds emitted from an analyte. Adsorption of gas molecules onto the nanocrystalline ITO thin film changes the resonant frequency of the quartz crystal. Parameters such as the frequency of oscillation, surface resistance, integrated frequency response, integrated surface resistance response, initial response slope, average return to baseline slope, and/or return to baseline time/initial response time ratio of the quartz crystal with the nanocrystalline ITO thin film formed thereon are determined. Using the determined parameters and principal component analysis, principal components for the gaseous compounds are also determined. These determined principal components may be compared with known principal components corresponding to known analytes.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: April 26, 2011
    Assignee: The University of North Florida Board of Trustees
    Inventors: Nirmalkumar G. Patel, Jay S. Huebner, Brian E. Stadelmaier, Jason J. Saredy
  • Publication number: 20100251802
    Abstract: A nanocrystalline ITO thin film formed on a quartz crystal microbalance (QCM) facilitates detection of gaseous compounds emitted from an analyte. Adsorption of gas molecules onto the nanocrystalline ITO thin film changes the resonant frequency of the quartz crystal. Parameters such as the frequency of oscillation, surface resistance, integrated frequency response, integrated surface resistance response, initial response slope, average return to baseline slope, and/or return to baseline time/initial response time ratio of the quartz crystal with the nanocrystalline ITO thin film formed thereon are determined. Using the determined parameters and principal component analysis, principal components for the gaseous compounds are also determined. These determined principal components may be compared with known principal components corresponding to known analytes.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Applicant: THE UNIVERSITY OF NORTH FLORIDA BOARD OF TRUSTEES
    Inventors: Nirmalkumar G. Patel, Jay S. Huebner, Brian E. Stadelmaier, Jason J. Saredy