Patents by Inventor Jason K. Otto

Jason K. Otto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9320605
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 26, 2016
    Assignees: Smith & Nephew, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jason K. Otto, Brian William McKinnon, Michael Dean Hughes, Michael D. Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20150173909
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: March 9, 2015
    Publication date: June 25, 2015
    Inventors: Jason K. Otto, Brian William McKinnon, Michael Dean Hughes, Michael D. Ries, Jan Victor, Johan Bellemans, Johnathan Garino, Timothy Wilton
  • Publication number: 20140188134
    Abstract: A robotic system for preparing a bone to receive a prosthetic device. The robotic system includes a controllable guide structure configured to guide cutting of the bone into a shape for receiving the prosthetic device, and a computer readable medium for storing data representative of the prosthetic device. The prosthetic device includes a body portion having an implantation surface configured to face the bone upon implantation and at least one feature that provides a constraint structure that will constrain the prosthetic device in the bone. The robotic system includes a control system for controlling the guide structure, and is configured to define at least one bone-cutting pattern for (i) removing a first portion of bone in a first area sufficient to seat the body portion and (ii) at least one of removing and maintaining a second portion of bone in a second area configured to interact with the constraint structure.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: MAKO Surgical Corp.
    Inventors: Scott David Nortman, Amit Mistry, Jason K. Otto, Robert Van Vorhis, Mark Ellsworth Nadzadi, Miranda Jamieson
  • Publication number: 20140019110
    Abstract: A method for preoperatively characterizing an individual patient's biomechanic function in preparation of implanting a prosthesis is provided. The method includes subjecting a patient to various activities, recording relative positions of anatomy during said various activities, measuring force environments responsive to said patient's anatomy and affected area during said various activities, characterizing the patient's biomechanic function from said relative positions and corresponding force environments, inputting the measured force environments, relative positions of knee anatomy, and patient's biomechanic function characterization into one or more computer simulation models, inputting a computer model of the prosthesis into said one or more computer simulation models, and manipulating the placement of the prosthesis in the computer simulation using said patient's biomechanic function characterization and said computer model of the prosthesis to approximate a preferred biomechanical fit of the prosthesis.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 16, 2014
    Applicant: SMITH & NEPHEW, INC.
    Inventors: Jason K. Otto, Brian W. MCKINNON, Mark Ellsworth NADZADI
  • Patent number: 8521492
    Abstract: A method for preoperatively characterizing an individual patient's biomechanic function in preparation of implanting a prosthesis is provided. The method includes subjecting a patient to various activities, recording relative positions of anatomy during said various activities, measuring force environments responsive to said patient's anatomy and affected area during said various activities, characterizing the patient's biomechanic function from said relative positions and corresponding force environments, inputting the measured force environments, relative positions of knee anatomy, and patient's biomechanic function characterization into one or more computer simulation models, inputting a computer model of the prosthesis into said one or more computer simulation models, and manipulating the placement of the prosthesis in the computer simulation using said patient's biomechanic function characterization and said computer model of the prosthesis to approximate a preferred biomechanical fit of the prosthesis.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: August 27, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Jason K. Otto, Brian W. McKinnon, Mark Ellsworth Nadzadi
  • Patent number: 8425617
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 23, 2013
    Assignees: Smith & Nephew, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Patent number: 8398715
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: March 19, 2013
    Assignees: Smith & Nephew, Inc., The Trustees of The University of Pennsylvania
    Inventors: Jason K. Otto, Brian McKinnon, Michael Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Johnathan Garino, Timothy Wilton
  • Patent number: 8398716
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 19, 2013
    Assignees: Smith & Nephew, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Patent number: 8394148
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 12, 2013
    Assignees: Smith & Nephew, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20130046384
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: October 24, 2012
    Publication date: February 21, 2013
    Inventors: Jason K. Otto, Brian William McKinnon, Michael Dean Hughes, Michael D. Ries, Jan Victor, Johan Bellemans, Johnathan Garino, Timothy Wilton
  • Patent number: 8142509
    Abstract: Embodiments of the present invention provide patellar component designs that are optimally shaped to help reduce shear force and accommodate slight implantation error. Further, they help lessen anterior knee pain, particularly during deep-flexion activities and help ease the transition during the range of knee movement in a controlled way.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 27, 2012
    Assignee: Smith & Nephew, Inc.
    Inventors: Brian W. McKinnon, Jason K. Otto
  • Publication number: 20110137619
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 9, 2011
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110137427
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 9, 2011
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110137426
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 9, 2011
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110130841
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110130842
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Inventors: JASON K. OTTO, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110130843
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Inventors: JASON K. OTTO, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110125280
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: December 17, 2010
    Publication date: May 26, 2011
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110125283
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 26, 2011
    Inventors: JASON k. OTTO, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton
  • Publication number: 20110125281
    Abstract: Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 26, 2011
    Inventors: Jason K. Otto, Brian McKinnon, Dean Hughes, Michael Ries, Jan Victor, Johan Bellemans, Jonathan Garino, Timothy Wilton