Patents by Inventor Jason Kirkwood

Jason Kirkwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11774371
    Abstract: A system has detectors configured to receive a beam of light reflected from a wafer. For example, three detectors may be used. Each of the detectors is a different channel. Images from the detectors are combined into a pseudo-color RGB image. A convolutional neural network unit (CNN) can receive the pseudo-color RGB image and determine a size of a defect in the pseudo-color RGB image. The CNN also can classify the defect into a size category.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 3, 2023
    Assignee: KLA Corporation
    Inventors: Jan Lauber, Jason Kirkwood
  • Publication number: 20230122514
    Abstract: A location of grid lines in an image of a laser-annealed semiconductor wafer is determined. An area covered by the grid lines can be filled using a new gray value. The new gray value can be based on a second gray scale value of a neighborhood around the area. The neighborhood is outside of the area covered by the grid lines.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 20, 2023
    Inventors: Jan Lauber, Jason Kirkwood
  • Publication number: 20210364450
    Abstract: A system has detectors configured to receive a beam of light reflected from a wafer. For example, three detectors may be used. Each of the detectors is a different channel. Images from the detectors are combined into a pseudo-color RGB image. A convolutional neural network unit (CNN) can receive the pseudo-color RGB image and determine a size of a defect in the pseudo-color RGB image. The CNN also can classify the defect into a size category.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Jan Lauber, Jason Kirkwood
  • Patent number: 10854486
    Abstract: A system for defect detection and analysis is provided. The system may include an inspection sub-system and a controller including a memory and one or more processors. The inspection sub-system may include an illumination source and one or more detectors configured to acquire control patch images of defects of a control specimen along one or more detector channels. The one or more processors may be configured to train a defect classifier using the control patch images and known parameters associated with the defects of the control specimen. The inspection sub-system may be further configured to acquire patch images of identified defects on an additional specimen. The one or more processors may be configured to determine parameters of the identified defects using the defect classifier.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 1, 2020
    Assignee: KLA Corporation
    Inventors: Jason Kirkwood, Jan Lauber
  • Patent number: 10605744
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: March 31, 2020
    Assignee: KLA-Tencor Corp.
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Publication number: 20200090969
    Abstract: A system for defect detection and analysis is provided. The system may include an inspection sub-system and a controller including a memory and one or more processors. The inspection sub-system may include an illumination source and one or more detectors configured to acquire control patch images of defects of a control specimen along one or more detector channels. The one or more processors may be configured to train a defect classifier using the control patch images and known parameters associated with the defects of the control specimen. The inspection sub-system may be further configured to acquire patch images of identified defects on an additional specimen. The one or more processors may be configured to determine parameters of the identified defects using the defect classifier.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 19, 2020
    Inventors: Jason Kirkwood, Jan Lauber
  • Publication number: 20180202943
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 19, 2018
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Patent number: 9880107
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: January 30, 2018
    Assignee: KLA-Tencor Corp.
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Patent number: 9360863
    Abstract: Various embodiments for determining parameters for wafer inspection and/or metrology are provided.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 7, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Govind Thattaisundaram, Mohan Mahadevan, Ajay Gupta, Chien-Huei Adam Chen, Ashok Kulkarni, Jason Kirkwood, Kenong Wu, Songnian Rong
  • Patent number: 9053390
    Abstract: Methods and systems for determining inspection scenarios without input from a user are presented. Inspection scenarios include at least one acquisition mode, defect detection parameter values, and classification parameter values. In one example, a number of defect events are determined by a hot inspection of a wafer surface. The defect events are classified and attributes associated with each defect event are identified. The defect events are labeled with this information. Based on the identified attributes and classification, inspection scenarios are determined. The inspection scenarios are solutions in a mathematical space formed by the identified attributes. In some examples, a plurality of inspection scenarios are determined and a desired inspection scenario is selected from the plurality based on the number of defects of interest and the number of nuisance events captured by the selected inspection scenario.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: June 9, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Mohan Mahadevan, Govind Thattaisundaram, Ajay Gupta, Chien-Huei (Adam) Chen, Jason Kirkwood, Ashok Kulkarni, Songnian Rong, Ernesto Escorcia, Eugene Shifrin
  • Publication number: 20140050389
    Abstract: Methods and systems for determining inspection scenarios without input from a user are presented. Inspection scenarios include at least one acquisition mode, defect detection parameter values, and classification parameter values. In one example, a number of defect events are determined by a hot inspection of a wafer surface. The defect events are classified and attributes associated with each defect event are identified. The defect events are labeled with this information. Based on the identified attributes and classification, inspection scenarios are determined. The inspection scenarios are solutions in a mathematical space formed by the identified attributes. In some examples, a plurality of inspection scenarios are determined and a desired inspection scenario is selected from the plurality based on the number of defects of interest and the number of nuisance events captured by the selected inspection scenario.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Mohan Mahadevan, Govind Thattaisundaram, Ajay Gupta, Chien-Huei (Adam) Chen, Jason Kirkwood, Ashok Kulkarni, Songnian Rong, Ernesto Escorcia, Eugene Shifrin
  • Publication number: 20130250287
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Application
    Filed: May 22, 2013
    Publication date: September 26, 2013
    Applicant: KLA-Tencor Corporation
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Patent number: 8467047
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: June 18, 2013
    Assignee: KLA-Tencor Corp.
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Publication number: 20120268735
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 25, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Patent number: 8223327
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 17, 2012
    Assignee: KLA-Tencor Corp.
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Publication number: 20120116733
    Abstract: Various embodiments for determining parameters for wafer inspection and/or metrology are provided.
    Type: Application
    Filed: June 9, 2011
    Publication date: May 10, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Govind Thattaisundaram, Mohan Mahadevan, Ajay Gupta, Chien-Huei Adam Chen, Ashok Kulkarni, Jason Kirkwood, Kenong Wu, Songnian Rong
  • Patent number: 8049877
    Abstract: Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system for inspection of a layer of a wafer are provided. One method includes detecting a population of defects on the layer of the wafer using results of each of two or more scans of the wafer performed with different combinations of polarization settings of the inspection system for illumination and collection of light scattered from the wafer. The method also includes identifying a subpopulation of the defects for each of the different combinations, each of which includes the defects that are common to at least two of the different combinations, and determining a characteristic of a measure of signal-to-noise for each of the subpopulations. The method further includes selecting the polarization settings for the illumination and the collection to be used for the inspection corresponding to the subpopulation having the best value for the characteristic.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: November 1, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Richard Wallingford, Stephanie Chen, Jason Kirkwood, Tao Luo, Yong Zhang, Lisheng Gao
  • Publication number: 20100188657
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Publication number: 20090284733
    Abstract: Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system for inspection of a layer of a wafer are provided. One method includes detecting a population of defects on the layer of the wafer using results of each of two or more scans of the wafer performed with different combinations of polarization settings of the inspection system for illumination and collection of light scattered from the wafer. The method also includes identifying a subpopulation of the defects for each of the different combinations, each of which includes the defects that are common to at least two of the different combinations, and determining a characteristic of a measure of signal-to-noise for each of the subpopulations. The method further includes selecting the polarization settings for the illumination and the collection to be used for the inspection corresponding to the subpopulation having the best value for the characteristic.
    Type: Application
    Filed: May 14, 2008
    Publication date: November 19, 2009
    Inventors: Richard Wallingford, Stephanie Chen, Jason Kirkwood, Tao Luo, Yong Zhang, Lisheng Gao
  • Patent number: 6966402
    Abstract: A heat shield includes an inner portion, an outer portion, first and second insulating portions, and a deflecting portion. The inner portion includes a reflective material to reflect thermal energy that radiates from a heat/acoustic source. The outer portion includes a rigid material to provide structural support for the heat shield. The first and second insulating portions are intermediately positioned between the inner and outer portions. The deflecting portion is intermediately positioned between the first and second insulating portions to deflect acoustics from the heat/acoustic source. A method for manufacturing the heat shield is also disclosed.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: November 22, 2005
    Assignee: DANA Corporation
    Inventors: Calin Matias, Mark Boogemans, Jason Kirkwood