Patents by Inventor Jason Klaus

Jason Klaus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8294223
    Abstract: A method of manufacturing a metal gate structure includes providing a substrate (110) having formed thereon a gate dielectric (120), a work function metal (130) adjacent to the gate dielectric, and a gate metal (140) adjacent to the work function metal; selectively forming a sacrificial capping layer (310) centered over the gate metal; forming an electrically insulating layer (161) over the sacrificial capping layer such that the electrically insulating layer at least partially surrounds the sacrificial capping layer; selectively removing the sacrificial capping layer in order to form a trench (410) aligned to the gate metal in the electrically insulating layer; and filling the trench with an electrically insulating material in order to form an electrically insulating cap (150) centered on the gate metal.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 23, 2012
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Soley Ozer, Jason Klaus
  • Patent number: 8178436
    Abstract: Interconnect structures having improved adhesion and electromigration performance and methods to fabricate thereof are described. A tensile capping layer is formed on a first conductive layer on a substrate. A compressive capping layer is formed on the tensile capping layer. Next, an interlayer dielectric layer is formed on the compressive capping layer. Further, a first opening is formed in the ILD layer using a first chemistry. A second opening is formed in the tensile capping layer and the compressive capping layer using a second chemistry. Next, a second conductive layer is formed in the first opening and the second opening.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 15, 2012
    Assignee: Intel Corporation
    Inventors: Sean King, Jason Klaus
  • Publication number: 20110079830
    Abstract: A method of manufacturing a metal gate structure includes providing a substrate (110) having formed thereon a gate dielectric (120), a work function metal (130) adjacent to the gate dielectric, and a gate metal (140) adjacent to the work function metal; selectively forming a sacrificial capping layer (310) centered over the gate metal; forming an electrically insulating layer (161) over the sacrificial capping layer such that the electrically insulating layer at least partially surrounds the sacrificial capping layer; selectively removing the sacrificial capping layer in order to form a trench (410) aligned to the gate metal in the electrically insulating layer; and filling the trench with an electrically insulating material in order to form an electrically insulating cap (150) centered on the gate metal.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Inventors: Willy Rachmady, Soley Ozer, Jason Klaus
  • Patent number: 7875519
    Abstract: A method of manufacturing a metal gate structure includes providing a substrate (110) having formed thereon a gate dielectric (120), a work function metal (130) adjacent to the gate dielectric, and a gate metal (140) adjacent to the work function metal; selectively forming a sacrificial capping layer (310) centered over the gate metal; forming an electrically insulating layer (161) over the sacrificial capping layer such that the electrically insulating layer at least partially surrounds the sacrificial capping layer; selectively removing the sacrificial capping layer in order to form a trench (410) aligned to the gate metal in the electrically insulating layer; and filling the trench with an electrically insulating material in order to form an electrically insulating cap (150) centered on the gate metal.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Soley Ozer, Jason Klaus
  • Patent number: 7816218
    Abstract: A microelectronic device includes a metal gate with a metal gate upper surface. The metal gate is disposed in an interlayer dielectric first layer. The interlayer dielectric first layer also has an upper surface that is coplanar with the metal gate upper surface. A dielectric etch stop layer is disposed on the metal gate upper surface but not on the interlayer dielectric first layer upper surface.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: October 19, 2010
    Assignee: Intel Corporation
    Inventors: Jason Klaus, Sean King, Willy Rachmady
  • Patent number: 7759262
    Abstract: Methods to selectively form a dielectric etch stop layer over a patterned metal feature. Embodiments include a transistor incorporating such an etch stop layer over a gate electrode. In accordance with certain embodiments of the present invention, a metal is selectively formed on the surface of the gate electrode which is then converted to a silicide or germanicide. In other embodiments, the metal selectively formed on the gate electrode surface enables a catalytic growth of a silicon or germanium mesa over the gate electrode. At least a portion of the silicide, germanicide, silicon mesa or germanium mesa is then oxidized, nitridized, or carbonized to form a dielectric etch stop layer over the gate electrode only.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 20, 2010
    Assignee: Intel Corporation
    Inventors: Sean King, Jason Klaus
  • Publication number: 20100038687
    Abstract: A microelectronic device includes a metal gate with a metal gate upper surface. The metal gate is disposed in an interlayer dielectric first layer. The interlayer dielectric first layer also has an upper surface that is coplanar with the metal gate upper surface. A dielectric etch stop layer is disposed on the metal gate upper surface but not on the interlayer dielectric first layer upper surface.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Inventors: Jason Klaus, Sean King, Willy Rachmady
  • Publication number: 20090321795
    Abstract: Methods to selectively form a dielectric etch stop layer over a patterned metal feature. Embodiments include a transistor incorporating such an etch stop layer over a gate electrode. In accordance with certain embodiments of the present invention, a metal is selectively formed on the surface of the gate electrode which is then converted to a silicide or germanicide. In other embodiments, the metal selectively formed on the gate electrode surface enables a catalytic growth of a silicon or germanium mesa over the gate electrode. At least a portion of the silicide, germanicide, silicon mesa or germanium mesa is then oxidized, nitridized, or carbonized to form a dielectric etch stop layer over the gate electrode only.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Sean King, Jason Klaus
  • Publication number: 20090289334
    Abstract: A method of manufacturing a metal gate structure includes providing a substrate (110) having formed thereon a gate dielectric (120), a work function metal (130) adjacent to the gate dielectric, and a gate metal (140) adjacent to the work function metal; selectively forming a sacrificial capping layer (310) centered over the gate metal; forming an electrically insulating layer (161) over the sacrificial capping layer such that the electrically insulating layer at least partially surrounds the sacrificial capping layer; selectively removing the sacrificial capping layer in order to form a trench (410) aligned to the gate metal in the electrically insulating layer; and filling the trench with an electrically insulating material in order to form an electrically insulating cap (150) centered on the gate metal.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 26, 2009
    Inventors: Willy Rachmady, Soley Ozer, Jason Klaus
  • Publication number: 20080150145
    Abstract: Interconnect structures having improved adhesion and electromigration performance and methods to fabricate thereof are described. A tensile capping layer is formed on a first conductive layer on a substrate. A compressive capping layer is formed on the tensile capping layer. Next, an interlayer dielectric layer is formed on the compressive capping layer. Further, a first opening is formed in the ILD layer using a first chemistry. A second opening is formed in the tensile capping layer and the compressive capping layer using a second chemistry. Next, a second conductive layer is formed in the first opening and the second opening.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Sean King, Jason Klaus
  • Patent number: 6090442
    Abstract: The present invention provides a method for growing atomic layer thin films on functionalized substrates at room temperature using catalyzed binary reaction sequence chemistry. Specifically, the atomic layer films are grown using two half-reactions. Catalysts are used to activate surface species in both half-reactions thereby enabling both half-reactions to be carried out at room temperature.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: July 18, 2000
    Assignee: University Technology Corporation
    Inventors: Jason Klaus, Ofer Sneh, Steven M. George